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Does valuation risk explain the equity premium and volatility of stock returns? The pri-

mary challenge faced by consumption-based asset pricing models is explaining the level and

volatility of asset returns given the relative stability of consumption growth and its weak

correlation with returns. This challenge is the essence of the Mehra and Prescott (1985) eq-

uity premium puzzle and the correlation puzzle discussed by an extensive literature including

Campbell and Cochrane (1999) and Cochrane (2001).

Albuquerque, Eichenbaum, Luo, and Rebelo (2016) propose that valuation risk is the

key to resolving these puzzles. In the valuation risk model, stochastic time preferences

play a central role in generating stock price volatility. As agents become more impatient,

discount rates rise and stock prices fall. With Epstein-Zin preferences, marginal utility varies

with time preferences, inducing valuation risk. Stocks are risky because they perform poorly

when investors become more impatient. Albuquerque et al. specify and estimate a structural

model with stochastic time preferences. The model produces a large equity premium and

volatile stock prices with consumption and dividend processes that are generally consistent

with the data, and it accomplishes this with relatively low risk aversion of 1.5 to 2.4. Maurer

(2012) proposes a similar model of stochastic time preferences generating a large equity

premium. Schorfheide, Song, and Yaron (2018) and Creal and Wu (2020) model stochastic

time preferences using Albuquerque et al.’s modified Epstein-Zin preferences and related

processes for time preference variation.

In this paper, I assess the valuation risk model both theoretically and empirically. I

start by considering the model’s utility function with general consumption and time pref-

erence processes to derive general pricing results and develop intuition for how valuation

risk affects asset prices. The resulting pricing equation indicates that stochastic time prefer-

ences create priced valuation risk relative to standard consumption models when elasticity

of intertemporal substitution (EIS) differs from the inverse of the coefficient of relative risk

aversion (RRA), which is what Albuquerque et al. (2016) find. The magnitude of the valu-

ation risk premium is proportional to RRA×EIS−1
1−EIS , indicating that valuation risk is governed
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by a combination of both RRA and EIS. Assessing the reasonableness of the model’s RRA

and EIS parameters in isolation misses the fact that seemingly reasonably parameters can

imply extreme aversion to valuation risk. In particular, the model’s valuation risk premium

is infinite in the limit as EIS approaches one.1 De Groot, Richter, and Throckmorton (2020)

propose an alternative valuation risk model that does not have an infinite risk premium as

EIS approches one and find that fixing this problem resurfaces the asset pricing puzzles that

valuation risk was designed to solve.

I next assess the specific preferences implied by the valuation risk model by asking how

much the model implies an agent would be willing to pay to avoid valuation risk. The

answer is that in the benchmark model, agents would be willing to give up 90% of current

and future consumption to avoid valuation risk by holding time preferences fixed, and in the

extended valuation risk model, agents would be willing to give up 55% of current and future

consumption to avoid valuation risk. These risk premia seem large and difficult to rationalize.

At a minimum, they highlight that evaluating the model’s preferences based solely on implied

relative risk aversion and elasticity of intertemporal substitution is insufficient. I also follow

Epstein, Farhi, and Strzalecki (2014) and evaluate the preference for early resolution of

uncertainty implied by the valuation risk model by asking what fraction of current and

future consumption agents would be willing to give up to resolve uncertainty immediately

instead of gradually. The resulting timing premia of 82% for the baseline model and 55% for

the extended model are also large and difficult to rationalize, particularly given that Epstein,

Farhi, and Strzalecki question the plausibility of much smaller timing premia of 24 to 31%

implied by Bansal and Yaron’s (2004) long-run risk model.

The paper’s empirical analysis starts by assessing what drives the equity premium in the

valuation risk model. While valuation risk plays an important role, long-run risk associated

with persistent consumption and dividend growth explains over half of the equity premium

in the extended Albuquerque et al. (2016) model. As a result, Albuquerque et al. and Bansal

1Uhlig (2014) makes a similar argument in a conference discussion of Albuquerque et al. (2016) that was
contemporaneous with earlier versions of this paper.
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and Yaron (2004) have similar implications for consumption and dividend growth persistence

and predictability. I follow Beeler and Campbell’s (2012) assessment of Bansal and Yaron’s

long-run risk model to evaluate these predictions. Consumption and dividend growth are

more persistent and predictable by the price-dividend ratio in the valuation risk model than

they are in the long-run risk model, which is inconsistent with the data.

Finally, the price-dividend ratio does not predict future risk-free rates in the data. In

contrast, the benchmark model counterfactually generates strong risk-free rate predictability.

This predictability is the essence of valuation risk. Investor impatience increases discount

rates, causing prices to fall. While the extended model is more consistent with the data, the

empirical lack of a relation between equity prices and future risk-free rates highlights that

there is little direct support for the valuation risk model in the data.

The challenges to valuation risk described in this paper highlight important limitations

to stochastic time preferences within a representative agent model. Heterogeneous agent

models such as those proposed by Bhamra and Uppal (2014) and Garleanu and Panageas

(2015) avoid these issues by generating discount rate variation through endogenous changes

to wealth over time instead of through preference shocks. While the valuation risk model is

a step forward for understanding how stochastic time preferences can affect asset prices, the

preference assessments and empirical evidence in this paper cast doubt on valuation risk’s

ability to resolve asset pricing puzzles. More generally, the paper highlights complications of

adding stochastic preferences to standard utility functions.2 Preference risk is fundamentally

different from consumption risk and likely requires more flexible preference models.

1 Theory

Following Albuquerque et al. (2016), I consider a representative agent with constant

elasticity of substitution Kreps and Porteus (1978) preferences characterized by a recursive

2Stochastic preferences can also have problematic implications for real macroeconomic activity as dis-
cussed by de Groot, Richter, and Throckmorton (2018).
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utility function similar to Weil (1989) and Epstein and Zin (1991). The only change from

standard Epstein-Zin utility is the addition of stochastic time preferences. I start by con-

sidering general consumption and time-preference processes and then discuss the specific

model proposed by Albuquerque et al.. The main results are presented and discussed below.

Derivations and additional details are in the Internet Appendix.

The representative agent’s preferences are summarized by continuation utility Ut, which

satisfies

Ut =

[
λtC

1−1/ψ
t + δ

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

]1/(1−1/ψ)

(1)

where Ct is consumption at time t, δ < 1 is a positive scalar capturing time discounting, ψ

is elasticity of intertemporal substitution, and γ is the coefficient of relative risk aversion.

The function is defined for ψ 6= 1 and γ 6= 1. Epstein and Zin (1989) prove the existence

of recursive utility functions of this form without the λt term for a specified domain of con-

sumption programs. Equation (1) represents standard Epstein-Zin preferences except that

time preferences are allowed to vary over time instead of being constant. Time preferences

are affected by λt+1

λt
, which is assumed to be known at time t. Because λt has a mean growth

rate of zero in the models being considered, the consumption program domain for equation

(1) is essentially the same as it is for standard Epstein-Zin preferences.3

Using standard techniques for working with Epstein-Zin preferences, Albuquerque et al.

(2016) show that equation (1) implies a log stochastic discount factor of

mt+1 = θ log (δ) + θΛt+1 −
θ

ψ
∆ct+1 + (θ − 1) rw,t+1 (2)

where Λt+1 = log
(
λt+1

λt

)
and θ = 1−γ

1−1/ψ
. Lower case letters signify logs. Log consumption

growth from period t to period t+ 1 is ∆ct+1. The log return on the overall wealth portfolio,

which is the claim to aggregate consumption, is rw,t+1. This stochastic discount factor is

3See Epstein and Zin (1989) for a formal description of the consumption program domain. The main
restriction is that long-run consumtion growth must be less than ( 1

δ )1/(1−1/ψ). In the modified Epstein-Zin

preferences described by equation (1), this restriction applies to λ
1/(1−1/ψ)
t Ct.
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standard for Epstein-Zin preferences except that time discounting (δ) is augmented by λt+1

λt
.

1.1 General model

First, consider an endowment economy with general processes for consumption and time

preferences to derive general pricing results and develop intuition about how valuation risk

affects prices. Innovations to current and expected future consumption growth and time

preferences are jointly lognormal and homoscedastic. Specifically,

Et [∆ct+a] = Et−1 [∆ct+a] + εca,t (3)

and

Et [Λt+1+b] = Et−1 [Λt+1+b] + ελb,t (4)

with
{
εca,t
}
a>0

,
{
ελb,t
}
b>0

distributed jointly normally with constant variance.4 This assump-

tion implies that excess returns on the wealth portfolio are also lognormal and homoscedastic.

For simplicity, I assume that all other excess returns are lognormal as well. Lognormality

and homoscedasticity simplify the model and ensure that risk premia are constant over time,

focusing attention on consumption growth and time preference shocks. In their benchmark

model, Albuquerque et al. (2016) specify a more restrictive stochastic process for time pref-

erences and assume that expected consumption growth is constant over time. Albuquerque

et al.’s extended model adds variance shocks and specifies a more general stochastic process

for time preferences and consumption growth. Similarly, Bansal and Yaron’s (2004) case

1 model specifies consumption growth shocks that nest within the structure specified by

equation (3), and their case 2 model adds variance shocks.

The stochastic discount factor of equation (2) can be used to price all assets. In particular,

4Note that Λt+1 is known one period in advance so time t shocks to Λ expectations start with Λt+1.
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it implies a real risk-free rate of

rf,t+1 = − log (δ)− Λt+1 +
1

ψ
Et [∆ct+1]− 1− θ

2
σ2
w −

θ

2ψ2
σ2
c (5)

and risk premia of

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i =

θ

ψ
σic + (1− θ)σiw (6)

where σ2
w is the variance of excess returns to the wealth portfolio, σ2

c = vart
(
εc0,t+1

)
is the

conditional variance of consumption growth, σic is covariance of asset i’s return with current

consumption shocks, and σiw is covariance of asset i’s return with wealth portfolio returns.

Subtracting 1
2
σ2
i is a Jensen’s inequality correction for expected log returns using the variance

of asset i’s return. From equations (5) and (6), it is clear that the real risk-free interest rate

changes over time in response to time preferences (Λt+1) and expected consumption growth

(Et [∆ct+1]) and that risk premia are constant over time.

1.1.1 Extended consumption CAPM

The representative agent’s budget constraint is Wt+1 = Rw,t+1 (Wt − Ct), where Wt is

wealth and Rw,t+1 is the gross return to the wealth portfolio. Following Campbell (1993,

2018), the budget constraint can be log-linearized to yield

rw,t+1 − Et [rw,t+1] = (Et+1 − Et)
∞∑
j=0

ρj∆ct+1+j − (Et+1 − Et)
∞∑
j=1

ρjrw,t+1+j (7)

where ρ is a log-linearization constant.5 Because risk premia are constant over time, shocks to

expected future returns, Newsh,t+1 ≡ (Et+1 − Et)
∑∞

j=1 ρ
jrw,t+1+j, depend solely on changes

to expected interest rates, which change over time in response to time preferences and ex-

pected consumption growth as described by equation (5).6

Using the budget constraint specified by equation (7) and the risk-free rate decomposition

5Specifically, ρ = 1− exp (c− w) where c− w is the average log consumption-wealth ratio.
6The h subscript follows the notation of Campbell (1993) to indicate hedging of future interest rates.
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of equation (5), wealth portfolio returns can be substituted out to express the stochastic

discount factor and risk premium equation as an extended consumption capital asset pricing

model (CCAPM).The resulting log stochastic discount factor is

mt+1 = θ log (δ) + θΛt+1 −
θ

ψ
Et∆ct+1 − γ (∆ct+1 − Et∆ct+1)

+

(
1

ψ
− γ
)

(Et+1 − Et)
∞∑
j=1

ρj∆ct+1+j

+
1− γψ
ψ − 1

(Et+1 − Et)
∞∑
j=1

ρjΛt+1+j, (8)

and the resulting pricing equation is

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσic + (γψ − 1)σih(c) −

γψ − 1

ψ − 1
σih(λ). (9)

where σih(c) ≡ covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

j 1
ψ

∆ct+1+j

)
is covariance with shocks to ex-

pected future interest rates due to changing consumption growth expectations, and σih(λ) ≡

covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jΛt+1+j

)
is covariance with shocks to expected future interest

rates due to changing expected time preferences. Together, they add up to covariance with

overall interest rate news, σih ≡ covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jrf,t+1+j

)
= σih(c) + σih(λ).

Derivation details and an alternative intertemporal CAPM representation of the pricing

equation are in the Internet Appendix.

Equation (9) is an extended version of the standard consumption CAPM pricing equation.

As in other CCAPM models, consumption risk (σic) is priced by relative risk aversion (γ).

Consistent with Bansal and Yaron (2004), the standard CCAPM holds under power utility

(γ = 1/ψ), and covariance with shocks to expected future consumption growth (σih(c)) is

only priced if γ 6= 1/ψ.7 Covariance with shocks to expected future time preferences (σih(λ))

is also priced only if γ 6= 1/ψ. Yet, the two types of interest rate news covariance are priced

7Bansal and Yaron (2004) express their version of equation (9) in terms of covariance with future con-
sumption growth instead of covariance with risk-free rate news. This is a different way of describing the
same relation.
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differently. Whereas σih(c) is priced by γψ − 1, σih(λ) is priced by −γψ−1
ψ−1

. When ψ > 1, the

prices have opposite signs, and if ψ is close to 1, time-preference risk is amplified relative to

consumption growth risk.

1.1.2 Augmented consumption

Another way to derive the extended CCAPM pricing equation is to change notation and

consider preferences with respect to augmented consumption, defined as C̃t ≡ λ
1/(1−1/ψ)
t Ct.

With this notation change, equation (1) is transformed into standard Epstein-Zin pref-

erences with respect to augmented consumption. Log augmented consumption growth,

∆c̃t+1 = ∆ct+1 + 1
1−1/ψ

Λt+1 comes from both consumption growth and time preferences. As

Albuquerque et al. (2016) note, time preferences and consumption growth operate in similar

ways. Dew-Becker and Giglio (2016) show that under typical calibrations, Epstein-Zin pref-

erences imply large risk prices for long-run, low frequency consumption growth shocks. The

same thing is true for long-run shocks to 1
1−1/ψ

Λt+1 under the modified Epstein-Zin prefer-

ences described by equation (1). Standard pricing equations hold with respect to augmented

consumption, and equation (9) can be obtained by a change of variables transformation from

augmented consumption to consumption.

1.1.3 Valuation risk as ψ approaches 1

Equation (1) is not defined when ψ = 1, and the valuation risk premium (−γψ−1
ψ−1

σih(λ) in

Equation (9)) becomes infinite as ψ approaches 1. As can be seen in equation (8), the log

stochastic discount factor’s variance becomes infinite as ψ approaches 1. The only way to

avoid this result is for variance of time preference shocks to approach zero as ψ approaches

1.

Consider alternative preferences described by utility Vt satisfying recursion

Vt =

[
(λ∗tCt)

1−1/ψ + δ
(
Et

[
V 1−γ
t+1

]) 1−1/ψ
1−γ

]1/(1−1/ψ)

(10)
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when ψ 6= 1, and

log (Vt) = log (λ∗tCt) + δ log
(
Et

[
V 1−γ
t+1

]) 1
1−γ (11)

when ψ = 1. Modified time preference λ∗t is a multiplier on consumption, whereas λt in

equation (1) is a multiplier on the flow utility from consumption, C
1−1/ψ
t . Utility function

Vt represents standard Epstein-Zin preferences with respect to λ∗tCt, and Vt is equivalent to

Ut in equation (1) when ψ 6= 1 and λ∗t = λ
1/(1−1/ψ)
t .

Substituting λ∗t for λt in equations (8) and (5) yields a log stochastic discount factor of

mt+1 = θ log (δ) + (1− γ) Λ∗t+1 −
θ

ψ
Et∆ct+1 − γ (∆ct+1 − Et∆ct+1)

+

(
1

ψ
− γ
)

(Et+1 − Et)
∞∑
j=1

ρj∆ct+1+j

+

(
1

ψ
− γ
)

(Et+1 − Et)
∞∑
j=1

ρjΛ∗t+1+j (12)

and a risk-free rate of

rf,t+1 = − log (δ)−
(

1− 1

ψ

)
Λ∗t+1 +

1

ψ
Et [∆ct+1]− 1− θ

2
σ2
w −

θ

2ψ2
σ2
c , (13)

where Λ∗t+1 = log
(
λ∗t+1

λ∗t

)
. If (Et+1 − Et)

∑∞
j=1 ρ

jΛ∗t+1+j has finite variance, the log stochastic

discount factor has finite variance, and risk premia are finite, even when ψ = 1.

The preferences described by equations (10) and (11) are well-defined and generate finite

risk premia when ψ = 1. While this is a technical fix to the model’s infinite valuation risk

premia when ψ = 1, the fix works by eliminating valuation risk as ψ approaches 1. When

ψ = 1, the risk-free rate in equation (13) is insensitive to Λ∗t+1. Similarly, the rate of time

preference implied by equations (10) and (11), δ
(
λ∗t+1

λ∗t

)1−1/ψ

, is insensitive to λ∗t+1 when

ψ = 1. Thus, when ψ = 1, shocks to λ∗t+1 are priced, but they are unobserved and have no

impact on time preferences or valuations.

Under the original valuation risk model, valuation risk premia are infinite as ψ approaches
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1. Under the alternative preferences specified by equations (10) and (11), valuation risk pre-

mia are finite, but the underlying valuation risk becomes infinitesimally small as ψ approaches

1. Finite risk premia for infinitesimal shocks are just as implausible as infinite risk premia

for finite shocks. In addition to embedding implausible preferences, the valuation risk model

also becomes difficult to test in the data as ψ approaches 1. When ψ is close to 1, agents are

extremely averse to arbitrarily small future preference changes that have almost no impact

on time preferences, the risk-free rate, or asset valuations. If the unobserved shocks have no

little impact observed prices, it is difficult to test the model in the data.

1.1.4 Valuation risk aversion

The extended CCAPM pricing equation (9) highlights that valuation risk becomes in-

creasingly important as ψ approaches one. In the limit as ψ approaches one, valuation risk

premia become infinite, and the model becomes untestable. This is problematic because ψ is

the model’s elasticity of intertemporal substitution (EIS), which is frequently estimated and

calibrated as being close to one. For example, Hansen and Sargent (2008) develop a model

with an EIS of one, Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) calibrate

EIS as 1.5, and Albuquerque et al. (2016) estimate EIS to be 1.5 to 2.2.8 Infinite valuation

risk premia are implausible. The fact that the valuation risk model generates infinite risk

premia with an EIS that is considered reasonable by much of the literature highlights the

multiple roles that γ and ψ play in the preferences expressed by equation (1). In addition to

capturing risk aversion and EIS, equation (1) also embeds preferences related to valuation

risk and resolution of uncertainty. The plausibility of the modeled preferences depends not

just on whether relative risk aversion and EIS are reasonable in isolation but also on these

additional preferences. Seemingly reasonable parameters can imply extreme valuation risk

aversion, potentially creating large risk premia with small preference shocks that may be

8An extensive literature empirically estimating EIS has produced little consensus with results ranging
from close to zero (e.g., Hall, 1988 and Campbell, 2003) to over one (e.g., Beaudry and van Wincoop, 1996
and Gruber, 2013).
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difficult to detect in the data. Section 2 revisits valuation risk aversion in more detail and

assesses the specific preferences implied by the Albuquerque et al. valuation risk model.

1.2 Calibrated model

Albuquerque et al. (2016) first propose a benchmark model of an endowment economy

with the following process for consumption growth, dividend growth, and time preferences:

∆ct+1 = µc + σεct+1

∆dt+1 = µd + πdcσε
c
t+1 + ϕσεdt+1

Λt+1 = ρΛΛt + σΛε
Λ
t

εct+1, ε
d
t+1, ε

Λ
t
iid∼ N (0, 1) . (14)

The log time preference ratio, Λt+1, is the only persistent state variable in the economy.

Variability of time preference shocks is determined by σΛ, and ρΛ determines their persis-

tence. At time t, εΛ
t and Λt+1 are both known. The model is a special case of the general

model discussed in Section 1.1 with constant expected consumption and dividend growth

and shocks to current and expected time preferences determined by εΛ
t .

In their extended model, Albuquerque et al. (2016) consider an endowment economy with

a more general process for consumption growth, dividend growth, and time preferences:

∆ct+1 = µc + ρc∆ct + αc
(
σ2
t+1 − σ2

)
+ πcΛε

Λ
t+1 + σtε

c
t+1

∆dt+1 = µd + ρd∆dt + αd
(
σ2
t+1 − σ2

)
+ πdΛε

Λ
t+1 + πdcσtε

c
t+1 + ϕσtε

d
t+1

σ2
t+1 = σ2 + ν

(
σ2
t − σ2

)
+ σωωt+1

Λt+1 = xt + σηηt+1

xt+1 = ρΛxt + σΛε
Λ
t+1

εct+1, ε
d
t+1, ε

Λ
t+1, ωt+1, ηt+1

iid∼ N (0, 1) . (15)
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Here, σ2
t+1 is time-varying volatility, which is centered at and slowly reverts to σ2. The

current log time preference ratio, Λt+1, is impacted both by transitory shocks, ηt+1, and by

a persistently varying component, xt. At time t, ηt+1 is known so that Λt+1 is known one

period in advance.

Compared to the benchmark model, the extended model adds time-varying volatility,

persistence in consumption and dividend growth, transitory time preference shocks, and

dependence of consumption and dividend growth on time preference shocks. The extended

model also includes persistent changes to expected consumption and dividend growth through

the αc
(
σ2
t+1 − σ2

)
and αd

(
σ2
t+1 − σ2

)
terms. These persistent changes to expected growth

rates have the effect of embedding long run risk within the model.9 With σω = 0, the model

is a special case of the more general model discussed in Section 1.1. With σω 6= 0, the

extended model adds time-varying conditional variance.

Albuquerque et al. (2016) solve the model with log-linear approximations (see the In-

ternet Appendix for details) and estimate the model using simulated method of moments

and historical data on consumption, dividends, and returns. Table 1 reports Albuquerque

et al.’s parameter estimates.10 Of particular note, the benchmark and extended models

both produce reasonably low relative risk aversion estimates (1.51 and 2.40, respectively).

The benchmark model captures the basic elements of valuation risk. The extended model

generates more empirically realistic consumption growth, dividend growth, and returns.

[Insert Table 1 Here]

9In the Bansal and Yaron (2004) long run risk model, dividend and consumption growth have a small
persistent predictable component. Because expected consumption and dividend growth depend on volatility,
stochastic volatility introduces a similar persistent predictable component to consumption and dividend
growth in the extended valuation risk model.

10Parameters are the same as those reported by Albuquerque et al. (2016) except that I define πdc and
ϕ as multipliers of σ instead of as standard deviations in the benchmark model for consistency with the
extended model. The parameters satisfy the restriction that long-run consumtion growth must be less than
( 1
δ )1/(1−1/ψ), which corresponds to annual consumption growth of 8.2% in the baseline model and 4.6% in

the extended model.
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2 Preference assessment

The central contribution of the valuation risk model is that the “model accounts for the

equity premium and volatility of stock and bond returns, even though the estimated degree

of agents’ risk aversion is moderate (roughly 1.5)” (Albuquerque et al., 2016, p. 2863).

The model’s elasticity of intertemporal substitution (roughly 1.5 to 2.2) is also in a range

typically considered reasonable. This contribution is analogous to the long-run risk model

of Bansal and Yaron (2004) and is arguably more significant because “long-run risk models

require a high degree of risk aversion to match the equity premium” (Albuquerque et al.,

2016, p. 2883).11 Fundamentally, this is a quantitative contribution. The model generates

an empirically reasonable equity premium while matching other moments in the data with

preference parameters that are seemingly reasonable based on introspection and experimental

research.

With respect to preferences, the valuation risk model’s estimated risk aversion and elas-

ticity of intertemporal substitution are moderate. However, risk aversion and intertemporal

substitution are not the only relevant preferences. As Epstein, Farhi, and Strzalecki (2014)

emphasize in their evaluation of long-run risk models, Epstein-Zin utility also implies a pref-

erence for early or late resolution of uncertainty. The valuation risk model utilizes not just

Epstein-Zin utility, but a modified version of Epstein-Zin utility that includes stochastic time

preferences. Thus, while preferences specified by the valuation risk model utility function

(equation (1)) are summarized by two parameters (γ and ψ), these parameters govern not

just relative risk aversion and elasticity of intertemporal substitution, but also preferences

for resolution of uncertainty and valuation risk. Evaluating the reasonableness of γ and ψ

only for their relative risk aversion and elasticity of intertemporal substitution implications

creates an incomplete picture of the overall plausibility of the preferences implied by equation

(1).

To assess the overall preferences implied by the valuation risk model, I follow Epstein,

11The long run risk model of Bansal and Yaron (2004) requires risk aversion on the order of 7.5 to 10.
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Farhi, and Strzalecki (2014) and ask, “How much would you pay to resolve long-run risk?”

I.e., how much consumption would you give up to immediately resolve all future uncertainty?

To assess aversion to time preference risk, I analogously ask how much agents would pay to

eliminate time preference risk by holding λt constant for all future periods.

2.1 Timing premium

Epstein, Farhi, and Strzalecki (2014) propose the following thought experiment. Consider

a given consumption process with uncertainty resolved over time and the same consumption

process with all uncertainty resolved at time 1. Both options involve the same consumption

process and same risk. The only difference is when the uncertainty is resolved. Epstein-Zin

utility with ψ > 1
γ

implies that one prefers early resolution. To quantify the strength of this

preference, Epstein, Farhi, and Strzalecki propose considering a timing premium, π∗, defined

as the maximum fraction of current and future consumption one would be willing to give up

to resolve all uncertainty at time 1. Defining U0 as the utility of the consumption process

with gradual resolution of risk and U∗0 as the utility of the same consumption process with

all risk resolved at time 1, the timing premium is

π∗ = 1− U0

U∗0
. (16)

As Albuquerque et al. (2016) discuss, the valuation risk model generates large, persistent

movements in the stochastic discount factor, much like the long run-run risk model. As a

result, the valuation risk model potentially embeds a similar timing premium. Calculating

the timing premium implied by the valuation risk model’s consumption process and prefer-

ences requires calculating U0 and U∗0 using numerical methods. Note that Ut in equation (1)

can be expressed as

U

(
Ct,

Ct
Ct−1

, λt, λt+1, xt, σ
2
t

)
= Ct−1λ

1
1−1/ψ

t H
(
∆ct,Λt+1, xt, σ

2
t

)
, (17)
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where H : R4 → R is the solution to

H
(
∆c,Λ, x, σ2

)
=

{
exp (∆c)1−1/ψ

[
1 + δ exp (Λ) J

(
∆c, x, σ2

) 1−1/ψ
1−γ

]} 1
1−1/ψ

, (18)

and J : R3 → R is

J
(
∆c, x, σ2

)
≡ E∆c,x,σ2

[
H
(
∆c′,Λ′, x′, σ2′)1−γ

]
. (19)

Here, E∆c,x,σ2 is the expectation conditional on ∆c, x, and σ2. This is the same basic approach

taken by Epstein, Farhi, and Strzalecki (2014) with a little more algebra because the valuation

risk model has a larger set of state variables. I then approximate J (∆c, x, σ2) on a discrete

grid of ∆c, x, and σ2 using Monte Carlo simulation to approximate the expectation and

iterating to find a fixed point for J (∆c, x, σ2). This approach achieves a reasonable level of

precision with 5,000 iterations, approximating the expectation operator with 1,000 random

simulations in the final iterations. Sensitivity analysis on the grid, number of iterations,

and number of simulations indicates that the resulting estimate is a stable and accurate

approximation of U0.

To calculate the value of U∗0 , I follow Epstein, Farhi, and Strzalecki (2014) and run Monte

Carlo simulations of U∗1 . Because all uncertainty is resolved at time 1, each simulation

corresponds to a realized consumption and time preference path. To calculate U∗1 , I simulate

paths of length T = 5, 000 with continuation value U0. I repeat this process 100,000 times

and then compute U∗0 using equation (1).

Table 2 reports the resulting timing premium. In the benchmark model, π∗ is 82%, and

π∗ is 55% for the extended model, which means the valuation risk model implies agents

would be willing to give up over half of their current and future consumption to resolve

future uncertainty immediately at time 1. Is this level of aversion to gradual resolution

of uncertainty reasonable? Epstein, Farhi, and Strzalecki (2014) find significantly smaller

timing premia of 20% to 30% for long-run risk models and argue that such preferences are
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difficult to rationalize. The analysis implies that agents in the valuation risk model would

be willing to give up most of their lifetime consumption to change the timing of uncertainty

resolution without any impact on the underlying consumption and time preference process

or risk level. While theoretically possible, aversion to gradual resolution of uncertainty of

this magnitude is difficult to rationalize. At a minimum, these timing premia suggest that

the valuation risk model’s preference estimates are not as moderate as looking at γ and ψ

in isolation would suggest.

[Insert Table 2 Here]

2.2 Valuation risk premium

Next, consider an analogous question about valuation risk. How much would you pay

to eliminate valuation risk? To answer this question, I calculate valuation risk premium, π̂,

defined as the maximum fraction of current and future consumption one would be willing to

give up in order to hold λt constant for all future periods with no changes to the consumption

process. Defining Û0 as the utility of the consumption process with constant λt,

π̂ = 1− U0

Û0

, (20)

where Û0 is calculated using the same numerical method described for U0.

As reported in Table 2, the resulting valuation premium is 90% in the benchmark model

and 55% in the extended model. Like the timing premia calculated in the previous subsection,

these seem very high. Certainly, they suggest that preferences toward valuation risk are not

as moderate as relative risk aversion of 1.5 to 2.4 would suggest in isolation.

The final row of Table 2 reports total risk premia, π = 1 − U0

U0
, where U0 is utility

with constant λt and consumption process Ct = E0 [Ct] for all t. Analogous to the timing

and valuation risk premia, total risk premium represents that fraction of total and expected

future consumption one would give up to avoid all risk. In the benchmark model, π is 90%,
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and π is 94% in the extended model, again indicating that the valuation risk model implies

a high risk premium despite its seemingly modest coefficient of relative risk aversion.

3 Empirical assessment

To empirically assess the valuation risk model, I simulate the model and compare ba-

sic moments in the simulated and historical data. I then investigate what is driving the

equity premium in the model. Like the long run risk model of Bansal and Yaron (2004),

the valuation risk model features important correlations between stock returns and small

but highly persistent shocks to long-term growth rates. Albuquerque et al. (2016) primarily

focus on long term λt growth shocks, but as discussed in Section 1.2, the extended model

also includes important shocks to long term consumption and dividend growth. Given the

importance of these long-term shocks, I follow Beeler and Campbell’s (2012) empirical as-

sessment of the long-run risk model and ask whether the valuation risk model’s growth and

return persistence and predictability are consistent with historical data.

For historical data on consumption, dividends, and returns, I use the 1930 to 2008 U.S.

annual data constructed and used by Beeler and Campbell (2012) and Bansal, Kiku, and

Yaron (2012).12 Consumption data is U.S. real nondurables and services consumption from

the Bureau of Economic Analysis. Stock return and dividend data is from CRSP, converted

to real values using the CPI. The ex-ante real risk-free rate comes from forecast regressions

using current Treasury bill yields and lagged inflation. See Beeler and Campbell (2012)

for additional details. Except for slight differences in their methodology for estimating ex-

ante real risk-free rates, the data are equivalent to the U.S. data Albuquerque et al. (2016)

construct for 1929 to 2011 with similar empirical sample moments.

To simulate the model, I generate 100,000 series of i.i.d. random variables εct+1, εdt+1,

εΛ
t+1, ωt+1, and ηt+1 to generate simulated monthly consumption and dividends based on

12I thank Jason Beeler and John Campbell for posting their data and associated code. For consistency,
I use the same data without updates and follow Beeler and Campbell’s (2012) empirical methodology as
closely as possible.
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the processes specified by equations (14) and (15). Monthly market returns and risk free

rates are calculated based on return equations discussed in the Internet Appendix. Each

simulation is initiated for 10 years and then generates 79 years of simulated data to match

the length of the historical sample. One complexity is dealing with negative realizations of

σ2
t . While shocks to σ2

t are small relative to its long-term mean, they are persistent enough

that negative realizations of σ2
t are reasonably common, occurring at some point during

76% of extended model simulations. I keep these negative realizations of σ2
t for purposes of

calculating σ2
t+1 and the αc

(
σ2
t+1 − σ2

)
and αd

(
σ2
t+1 − σ2

)
terms of ∆ct+1 and ∆dt+1, but

I replace σt with a small positive number for purposes of calculating σtε
c
t+1, πdcσtε

c
t+1, and

ϕσtε
d
t+1 whenever σ2

t is negative to ensure that consumption and dividend shock variance is

always positive.13 The simulated data is annualized following the conventions described by

Beeler and Campbell (2012). Annual log returns are the sum of monthly log returns. For

consumption and dividend growth, monthly consumption and dividends are summed, and

annual growth is the growth rate of the sum. To annualize price dividend ratios, I multiply

the year-end monthly price-dividend ratio by the last month’s dividend and divide by the

sum of all dividends over the past year.

3.1 Basic moments

Table 3 reports basic moments of the data along with median simulated moments from

100,000 simulations of the benchmark and extended models. For the most part, the simulated

moments are similar to the model moments reported by Albuquerque et al. (2016).14 The

13This approach differs from the approach taken by Bansal and Yaron (2004), Bansal, Kiku, and Yaron
(2012), and Beeler and Campbell (2012), who instead replace all negative realizations of σ2

t with a small
positive value. The distinction is meaningful because in the valuation risk model, expected consumption
and dividend growth in part depend on σ2

t . Thus, censoring σ2
t changes long-run average consumption

and dividend growth. Albuquerque et al. (2016) are silent as to how they handle negative realizations of
σ2
t , but their reported model average consumption and dividend growth indicate that they retain negative

realizations of σ2
t .

14Two exceptions are consumption growth serial correlation and the mean risk-free rate. The difference in
reported serial correlations appears to be due to methodology for annualizing consumption growth. Summing
monthly log consumption growth instead of calculating the log of annual consumption growth generates serial
correlations close to those reported by Albuquerque et al. (2016). Albuquerque et al. constrain their median
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main takeaway from Table 3 is that the benchmark and extended models are both reasonably

successful at matching means, standard deviations, and serial correlations of consumption

growth, dividend growth, stock market returns, the risk-free rate, and the price-dividend ra-

tio. This success is aided to some extent by the fact that the models were estimated based on

many of these moments. Still, it is a victory for the models. With empirically reasonable con-

sumption and dividend growth, the models match empirical stock return and price-dividend

levels and volatility with moderate relative risk aversion of 1.5 in the benchmark model and

2.4 in the extended model.

[Insert Table 3 Here]

3.2 Equity premium

The primary result of the valuation risk model is that shocks to time preferences create

valuation risk that can explain the observed equity premium with low risk aversion despite

low correlation between stock returns and consumption growth. This result is easiest to

see in the benchmark model, which generates an equity premium of 7.48% in the median

simulation, compared to an average equity premium of 7.01% in the historical data.15 By

design, the benchmark model’s equity premium is entirely driven by valuation risk. As

reported in Table 4 and discussed by Albuquerque et al. (2016), shutting down valuation

risk by setting σΛ = ση = 0 and re-simulating the economy under identical values for other

parameters results in an equity premium of 0.01%.

[Insert Table 4 Here]

The extended model adds additional shocks to match other moments in the data. As a

result, risk in the extended model is more complicated. In addition to valuation risk, the

risk-free rate to match the point estimate in the data, resulting in median risk-free rates of 0.13%, whereas
the median simulated mean risk-free rates in Table 3 are -0.01% for the benchmark model and 0.33% for the
extended model.

15The equity premium in both the data and the simulations is calculated as the mean log excess return
plus one half of its variance.
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model has time-varying conditional variance, which in turn affects expected consumption

and dividend growth. Albuquerque et al. (2016) consider setting σΛ = 0 to shut down

valuation risk and setting σω = 0 to shut down conditional volatility shocks and conclude

that valuation risk and conditional volatility both play important roles in generating the

equity premium. This decomposition overlooks the fact that shocks to σ2
t change both

conditional variances and conditional expectations. The αc
(
σ2
t+1 − σ2

)
and αd

(
σ2
t+1 − σ2

)
terms in the consumption and dividend growth processes create persistent shocks to expected

growth that function in much the same way as the persistent growth shocks in long-run risk

models. Setting σω = 0 simultaneously shuts down both conditional volatility and persistent

growth shocks.

To explore the relative importance of valuation risk, conditional volatility, and long-run

risk created by persistent growth shocks, I consider shutting each channel down one step

at a time. Table 4 reports the results. The extended model initially generates an equity

premium of 6.28%. Shutting down valuation risk by setting σΛ = ση = 0 decreases the

equity premium from 6.28% to 4.46%. I next shut down the long-run risk channel by setting

αc = αd = 0. The equity premium drops to 3.14% with valuation risk and 0.01% without

valuation risk. By contrast, shutting down conditional volatility by setting σω = 0 after the

long-run risk channel has already been shut down has no impact on the equity premium.16

The implication is that the equity premium in the extended valuation risk model heavily

relies on long-run risk associated with persistent expected growth shocks. Instead of being

an alternative to long-run risk, the extended valuation risk model is essentially a model of

long-run risk supplemented with valuation risk.

16It would be interesting to consider shutting down conditional volatility while preserving the long-run
risk channel. However, this is not possible because setting σω = 0 shuts down both conditional volatility
and long-run risk.
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3.3 Growth and return persistence

Because the valuation risk model involves persistent growth and time preference shocks, it

is important to assess whether the model’s persistence is consistent with the data. Beeler and

Campbell (2012) propose assessing persistence by computing variance ratios over different

horizons. The K-period variance ratio for consumption growth is:

V̂ (K) =
V̂ ar (∆ct+1 + ...+ ∆ct+K)

KV̂ ar (∆ct)
. (21)

Population variance ratios depend on weighted average population autocorrelations: V (K) =

1 + 2
∑K−1

j=1

(
1− j

K

)
ρj, where ρj is the correlation between ∆ct and ∆ct+j. I calculate vari-

ance ratios for consumption growth, dividend growth, and the risk-free rate in the data and

simulations. Table 5 reports results for 2-, 4-, and 6-year variance ratios. As discussed by

Beeler and Campbell, consumption and dividend growth have positive one-year autocorre-

lation followed by negative autocorrelations at longer horizons in the data. These long term

reversions result in consumption and dividend growth variance ratios of less than one at a

horizon of six years.

[Insert Table 5 Here]

The benchmark model’s consumption and dividend growth persistence is generally con-

sistent with the data. Across 100,000 simulations, the median consumption growth variance

ratio is 1.23 at a 2-year horizon, 1.30 at a 4-year horizon, and 1.28 at a 6-year horizon.

Compared to consumption growth variance ratios of 1.40, 1.38, and 0.84 in the data, the

model generates slightly less short-term autocorrelation than the data and does not exhibit

the longer-term reversion seen in the data. Nonetheless, these differences are modest and

fall short of or close to 10% significance thresholds. Across the 100,000 consumption growth

simulations, 4.3% of 2-year variance ratios, 37.4% of 4-year variance ratios, and 91.6% of 6-

year variance ratios are higher than the data. Simulated dividend growth variance ratios are
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close to the data at a horizon of two years and are higher than the data at longer horizons,

with a significant difference for the six-year variance ratio.

Results are less encouraging for the extended model, which generates large consumption

and dividend growth persistence. The median 6-year variance ratio in the extended model

is 3.28 for consumption growth and 2.61 for dividend growth, and 100% of simulations have

6-year variance ratios above that observed in the data, implying that 6-year variance ratios

soundly reject the extended model. Not only are these variance ratios high relative to the

data, they are also higher than the variance ratios generated by Bansal and Yaron’s (2004)

long-run risk model, which Beeler and Campbell (2012) calculate as 2.32 for consumption

growth and 1.87 for dividend growth. As estimated, the extended valuation risk model is

not an alternative to long-run risk models. Rather, it has even more persistent consumption

and dividend growth than long-run risk models themselves do. As discussed in Section 1.2,

persistent growth shocks are embedded in the valuation risk model through the dependence

of consumption and dividend growth on persistent changes to volatility. The results in Table

5 indicate that this channel generates significant long run risk.

Panel C of Table 5 shows risk-free rate persistence. Valuation risk comes from persistent

shocks to time preferences, which in turn shift the risk-free rate up or down. Is the resulting

risk-free rate persistence consistent with the data? For the most part, the answer is yes.

In the data, the risk-free rate variance ratio is 1.67 at a 2-year horizon, 2.45 at a 4-year

horizon, and 3.03 at a 6-year horizon. The benchmark model generates higher risk-free rate

variance ratios than this, but the extended model’s risk-free rate variance ratios are close to

those observed in the data, which indicates that the extended model does a reasonable job

of replicating historical risk-free rate persistence.

3.4 Growth and return predictability

Price-dividend ratio fluctuations in the valuation risk model are primarily driven by

persistent shocks to time preferences and conditional variance, which also impact expected
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consumption and dividend growth through the αc
(
σ2
t+1 − σ2

)
and αd

(
σ2
t+1 − σ2

)
terms in

equation (15). In addition to impacting time preferences and expected growth rates, these

shocks also affect the risk-free rate, equity premium, and asset prices. Thus, it is natural

to assess how growth and return predictability in the model relate to predictability in the

observed historical data. For this analysis, I again follow Beeler and Campbell (2012) and

regress future returns and growth on the current price-dividend ratio at horizons of 1, 3, and

5 years.

Table 6 reports the results. The first three columns summarize regressions of log excess

returns (Panel A), log consumption growth (Panel B), log dividend growth (Panel C), and

log risk-free rates (Panel D) on log price-dividend ratios in the data. Panels A, B, and C

are identical to Beeler and Campbell (2012), and Panel D applies the same methodology

to risk-free rates. The regressions replicate the longstanding result that the price-dividend

ratio predicts excess returns and does not predict consumption growth, dividend growth, or

the real risk-free rate (Fama and French, 1988; Campbell and Shiller, 1988). The remainder

of Table 6 reports results from the same regressions in 100,000 simulations of the benchmark

and extended models. For each regression, the table reports the median simulated R2 and the

fraction of simulations with an R2 greater than the R2 of the data. Simulated β coefficients

and percentiles are reported in Internet Appendix Table IA.1 with equivalent results.

[Insert Table 6 Here]

As reported in Panel A, the price-dividend ratio predicts future excess returns in the

data, with growing predictive power as the horizon increases, resulting in an R2 of 0.27 for

the 5-year regression. As discussed by Albuquerque et al. (2016) with essentially the same

regression analysis, the benchmark model fails to replicate this relation. Expected excess

returns are constant in the benchmark valuation risk model, resulting in median simulated

R2 values close to zero, which are rejected by the data at long horizons. The extended model

fares better. At a horizon of five years, the model’s median simulated R2 is 0.06. This is
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lower than the 0.27 R2 in the data, but 7.5% of simulations generate a higher R2 than the

data.

Turning to consumption and dividend growth in Panels B and C, the price-dividend ratio

does not predict consumption or dividend growth in the data, particularly at long horizons.

The benchmark model shares this lack of predictability. However, the price-dividend ratio

strongly predicts consumption and dividend growth in the extended model. For consumption

growth, the median simulated 5-year R2 is 0.54, and 99.9% of simulations have an R2 greater

than the data, implying that the data strongly rejects the model. Similarly, the median

simulated 5-year R2 for dividend growth is 0.48, and 96.5% of simulations have an R2 greater

than the data.

Panel D repeats the same regression analysis for risk-free rates. The price-dividend ratio

does not predict future risk-free rates in the data. The benchmark model counterfactually

generates strong risk-free rate predictability. This is not surprising. Time preference is

the only state variable affecting the price-dividend ratio in the benchmark model. As Λt+1

decreases, prices fall and expected future risk-free rates increase. This is the essence of

valuation risk. Investor impatience increases discount rates, causing prices to fall. The

benchmark model is too simple to expect it to match all features of the data. Nonetheless, it is

noteworthy that this core feature of valuation risk is completely missing in the data. Instead

of moving inversely with the expected future risk-free rate, stock prices are largely unrelated

to the risk-free rate in the data.17 If anything, the sign goes the wrong way. Albuquerque

et al. (2016) conduct similar analysis on the contemporaneous correlation between stock

prices and the risk-free rate and note that the relation varies across countries and is sensitive

to the sample time period being analyzed. While this makes it difficult to reject valuation

risk, it also highlights that there is limited support for valuation risk in the data.

The extended model moderates the negative correlation between the risk-free rate and

17Similarly, Campbell (1991) and Campbell and Ammer (1993) find that stock returns are highly related
to news about expected excess returns, but news about the real risk-free rate has little impact on stock
returns.
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the price-dividend ratio by introducing a negative correlation between shocks to Λt+1 and

shocks to expected dividend growth through the πdΛε
Λ
t+1 term in equation (15) with πdΛ < 0.

As Albuquerque et al. (2016) discuss, this change decreases the negative contemporaneous

correlation between the risk-free rate and price-dividend ratio. Similarly, it eliminates the

risk-free rate predictability in the regressions reported in Panel D of Table 6, consistent with

the data.

3.5 Valuation risk in the cross section

Is there evidence of a valuation risk premium in the cross section of stocks? If valuation

risk generates a large risk premium, stocks with more exposure to valuation risk should earn

higher average returns. A new literature on the term structure of equity returns suggests that

this is unlikely to be the case. Binsbergen, Brandt, and Koijen (2012), Binsbergen and Koijen

(2017), and Weber (2017) find longer duration stocks and claims to dividends further in the

future have lower expected returns. These results are the opposite of what the valuation

risk model would predict. Long duration claims are more sensitive to discount rate changes

and should have higher valuation risk premia. Albuquerque et al. (2016) acknowledge this

shortcoming and note that other asset pricing models are also inconsistent with this pattern.

Nonetheless, given that duration is at the core of valuation risk, the growing evidence on

the equity term structure would seem to be a problem for valuation risk. In the Internet

Appendix, I further analyze cross-sectional valuation risk by sorting stocks based on their

past return sensitivity to risk-free rate shocks and find no evidence that valuation risk is

priced in the cross section of returns.

4 Conclusion

The valuation risk model is an important step forward for understanding how stochastic

time preferences can affect asset prices. Epstein-Zin preferences applied to time preference

shocks introduce a new source of risk for investors that could help to explain the level and
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volatility of stock prices observed in the data. However, the valuation risk model implies pref-

erences toward valuation risk and resolution of uncertainty that are difficult to rationalize,

and model predictions regarding long-run consumption and dividend growth are inconsistent

with the data.

Empirical analysis highlights that the extended version of the valuation risk model embeds

significant long-run consumption and dividend growth persistence and predictability that are

not present in the data. This empirical inconsistency could be addressed by re-estimating

the model with these moments, but decreasing the role of long-run risk would inevitably

require valuation risk to explain more of the equity premium.

In the data, there is little relation between aggregate stock prices and the risk-free rate.

If anything, the correlation goes the wrong way and stock prices increase with the risk-free

rate. Thus, large aversion to valuation risk is required to generate a significant valuation

risk premium. The Epstein-Zin preferences specified by equation (1) generate a large risk

premium with relative risk aversion (γ) and elasticity of intertemporal substitution (ψ) that

are reasonable in isolation. However, these parameters imply extreme preferences regarding

resolution of uncertainty and valuation risk aversion. Extreme preferences are not necessarily

a problem if the model is simply meant to explain the data, but if the goal is to explain the

data with preferences that are quantitatively reasonable, it is important to understand what

preferences the model actually implies by considering how γ and ψ interact with one another.

This is true for models with Epstein-Zin utility in general and is particularly important when

using Epstein-Zin utility to describe aversion to a new source of risk such as changing time

preferences.

More generally, preference assessments highlight the potential complications of adding

stochastic preferences to standard utility functions. More flexible utility functions may be

necessary to separately describe and parameterize aversion to changing preferences. Devel-

oping such models is a difficult challenge but may be necessary for more progress to be made

on stochastic preferences.
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Table 1. Parameter values

Description: This table reports parameter values for the valuation risk model described by equations (14)
and (15) as specified and estimated by Albuquerque et al. (2016).
Interpretation: These parameter values describe the benchmark and extended models.

Benchmark Extended Benchmark Extended
Parameter Model Model Parameter Model Model

γ 1.5160 2.3961 ρd 0 0.33427
ψ 1.4567 2.2107 αd 0 -151.881
θ (implied) -1.6458 -2.5492 ϕ 2.478552 0.025274
δ 0.99795 0.99796 πdc 0.071194 -1.3205
µc 0.0015644 0.0010428 πdλ 0 -0.01091
ρc 0 0.094708 ρλ 0.99132 0.99168
αc 0 -95.3767 σλ 0.000586 0.000386
σ 0.0069004 0.0046033 ση 0 0.007783
πcλ 0 -0.0029185 ν 0 0.99717
µd 0.0015644 0.0007669 σω 0 1.68E-06
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Table 2. Timing and risk premia in the valuation risk model

Description: This table reports timing and risk premia for the valuation risk model. Timing premium
is the maximum percent of current and future consumption agents would be willing to give up to resolve
all future uncertainty at time 1. Valuation risk premium is the maximum percent of current and future
consumption agents would be willing to give up to avoid valuation risk by holding λt constant for all t. Total
risk premium is the maximum percent of current and future consumption agents would be willing to give
up to avoid all risk by holding λt constant for all t and by changing the consumption process to a known
endowment equal to the mean consumption endowment at each time implied by the original consumption
process.
Interpretation: The valuation risk model embeds large timing and valuation risk premia.

Benchmark model Extended model

Timing premium (π∗) 82.3% 54.7%

Valuation risk premium (π̂) 89.6% 55.2%

Total risk premium (π) 90.0% 93.6%
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Table 3. Basic moments of the data and model

Description: This table reports means (E()), standard deviations (σ()), and autocorrelations (ρ()) in the
historical data and model simulations. Log consumption growth is ∆c. Log dividend growth is ∆d. The log
aggregate stock market return is rm. The log real risk-free rate is rf . The log price dividend ratio is p – d.
Historical data is 1930 to 2008 annual data from the Bureau of Economic analysis and CRSP. The reported
model moments are median values from 100,000 simulations with time periods equal to the historical data.
The model is simulated monthly and then annualized for comparability to the data.
Interpretation: The valuation risk model is reasonably successful at matching means, standard deviations,
and serial correlations of consumption growth, dividend growth, stock market returns, the risk-free rate, and
the price-dividend ratio.

Benchmark Extended Benchmark Extended
Moment Data Model Model Moment Data Model Model

E(∆c) 1.93 1.88 1.39 E(rf ) 0.56 -0.01 0.33
σ(∆c) 2.16 1.94 2.49 σ(rf ) 2.89 4.41 4.10
ρ(∆c) 0.45 0.23 0.61 ρ(rf ) 0.65 0.89 0.50

E(∆d) 1.15 1.88 1.40 E(p – d) 3.36 3.23 3.42
σ(∆d) 11.05 4.81 6.56 σ(p – d) 0.45 0.32 0.51
ρ(∆d) 0.21 0.23 0.48 ρ(p – d) 0.87 0.84 0.90

E(rm) 5.47 5.88 4.70
σ(rm) 20.17 17.65 19.45
ρ(rm) 0.02 -0.04 0.00
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Table 4. Equity premium in the valuation risk model

Description: Reported equity premia are median values from 100,000 simulations. Equity premia are cal-
culated as mean annual log excess equity returns plus one half of its variance. Baseline simulations use pa-
rameter values reported in Table 1. Other simulations use baseline parameter values with the noted changes
to reflect shutting down different combinations of valuation risk, long-run risk, and stochastic volatility.
Interpretation: The equity premium in the extended model heavily depends on long-run risk from persis-
tent expected growth shocks in addition to valuation risk.

Extended model

Benchmark Stochastic Homoscedastic
model volatility (σω = 0)

Baseline 7.48 6.28

No valuation risk (σλ = ση = 0) 0.01 4.46

No long-run risks (αc = αc = 0) 3.14 3.13

No valuation or long-run risks 0.01 0.01
(σλ = ση = αc = αc = 0)
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Table 5. Variance ratios

Description: Variance ratios are calculated as V̂ (K) = V̂ ar(Xt+1+...+Xt+K)

KV̂ ar(Xt)
where X is annual log con-

sumption growth, log dividend growth, or the log real risk-free rate. Variance ratios in the data are based
on 1930 to 2008 annual historical data from the Bureau of Economic analysis and CRSP. Simulated variance
ratios are based on 100,000 simulations with time periods equal to the historical data. The models are simu-
lated monthly and then annualized for comparability with the historical data. For the simulations, the table
reports median variance ratios and the % of simulated variance ratios that are larger than the comparable
variance ratio observed in the data.
Interpretation: Variance ratios summarize the persistence of shocks to consumption growth, dividend
growth, and the risk-free rate in the data and model.

Benchmark model Extended model

Data Median % > data Median % > data

Panel A. Consumption variance ratios
2 years 1.40 1.23 4.3% 1.61 89.2%
4 years 1.38 1.30 37.4% 2.54 98.8%
6 years 0.84 1.28 91.6% 3.28 100.0%

Panel B. Dividend variance ratios
2 years 1.23 1.23 51.5% 1.49 96.7%
4 years 0.98 1.30 90.7% 2.13 99.8%
6 years 0.59 1.28 99.3% 2.61 100.0%

Panel C. Risk-free rate variance ratios
2 years 1.67 1.90 99.7% 1.51 13.8%
4 years 2.45 3.42 99.4% 2.36 42.9%
6 years 3.03 4.61 98.0% 3.03 50.1%
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Table 6. Predictive regressions

Description: This table reports results from regressing future log excess equity returns (panel A), con-
sumption growth (panel B), dividend growth (panel C), and real risk-free rates (panel D) on the current
log price-dividend ratio. Regressions in the data are based on 1930 to 2008 annual historical data from the
Bureau of Economic analysis and CRSP. Simulation regressions are based on 100,000 simulations with time
periods equal to the historical data. The models are simulated monthly and then annualized for compara-
bility with the historical data. For the simulations, the table reports the median R2 and the % of simulated
R2 that are larger than the comparable regression R2 in the data. Standard errors are Newey-West with
2*(horizon-1) lags.
Interpretation: Predictive regressions show the extent to which the price-dividend ratios predicts subse-
quent returns, consumption growth, dividend growth, and risk-free rates in the data and model.

Data Benchmark model R2 Extended model R2

β̂ t R2 Median % > data Median % > data

Panel A. Excess returns
1 year -0.09 -1.80 0.04 0.01 10.8% 0.01 15.6%
3 years -0.26 -3.23 0.17 0.02 4.7% 0.04 8.1%
5 years -0.41 -3.78 0.27 0.04 3.8% 0.06 7.5%

Panel B. Consumption growth
1 year 0.01 1.59 0.06 0.01 6.9% 0.39 96.4%
3 years 0.01 0.59 0.01 0.02 57.7% 0.53 99.4%
5 years 0.00 -0.06 0.00 0.03 96.8% 0.54 99.9%

Panel C. Dividend growth
1 year 0.07 1.98 0.09 0.01 4.0% 0.26 85.6%
3 years 0.11 1.33 0.06 0.02 22.5% 0.43 95.9%
5 years 0.09 1.21 0.04 0.03 42.3% 0.48 96.5%

Panel D. Risk-free rate
1 year 0.01 1.15 0.03 0.91 100.0% 0.05 62.6%
3 years 0.03 0.82 0.03 0.74 100.0% 0.07 68.3%
5 years 0.05 1.06 0.05 0.61 100.0% 0.08 59.0%
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Internet Appendix for:

“High Aversion to Stochastic Time Preference Shocks and
Counterfactual Long-Run Risk in the Albuquerque et al.

Valuation Risk Model”

A Solution details

This section of the appendix provides details and derivations for results discussed in the

main text of the paper.

A.1 General pricing equations

The representative agent has the augmented Epstein-Zin preferences described by equa-

tion (1):

Ut =

[
λtC

1−1/ψ
t + δ

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

]1/(1−1/ψ)
.

Optimization is subject to a budget constraint of

Wt+1 = Rw,t+1 (Wt − Ct) (IA.1)

where Wt is wealth at time t and Rw,t+1 is the return on the overall wealth portfolio, which

is a claim to all future consumption.

Albuquerque et al. (2016) use standard techniques from the Epstein-Zin preference lit-

erature to show that the preferences represented by equation (1) imply the log stochastic

discount factor expressed by equation (2):

mt+1 = θ log (δ) + θΛt+1 −
θ

ψ
∆ct+1 + (θ − 1) rw,t+1.

This is the same as the standard Epstein-Zin stochastic discount factor except that discount-

ing is time-varying (i.e., δ λt+1

λt
instead of δ).
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Using 0 = Et [mt+1 + ri,t+1] + 1
2

(σ2
m + σ2

i + 2σmi) (the log version of 1 = Et [Mt+1Ri,t+1]),

the expected return for any asset can be expressed as

Et [ri,t+1] +
1

2
σ2
i = −θ log

(
δ
λt+1

λt

)
+
θ

ψ
Et [∆ct+1] + (1− θ) Et [rw,t+1]

−1

2

(
θ

ψ

)2

σ2
c −

1

2
(1− θ)2 σ2

w +
θ

ψ
(θ − 1)σwc

+
θ

ψ
σic + (1− θ)σiw. (IA.2)

The 1
2
σ2
i on the left hand side of equation (IA.2) is the Jensen’s inequality correction for log

returns.

The resulting risk-free rate is

rf,t+1 = −θ log

(
δ
λt+1

λt

)
+
θ

ψ
Et [∆ct+1] + (1− θ) Et [rw,t+1]

−1

2

(
θ

ψ

)2

σ2
c −

1

2
(1− θ)2 σ2

w +
θ

ψ
(θ − 1)σwc. (IA.3)

Differencing equations (IA.2) and (IA.3) yields the risk premia of equation (6):

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i =

θ

ψ
σic + (1− θ)σiw,

which is exactly the same expression as in standard Epstein-Zin models. Substituting

Et [rw,t+1] into equation (IA.3), yields equation (5):

rf,t+1 = − log (δ)− Λt+1 +
1

ψ
Et [∆ct+1]−

1− θ
2

σ2
w −

θ

2ψ2
σ2
c ,

which is the same as standard Epstein-Zin models except that δ is replaced by δ λt+1

λt
.
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A.2 Intertemporal CAPM

Following Campbell (1993), the budget constraint can be log-linearized to generate equa-

tion (7):

rw,t+1 − Et [rw,t+1] = (Et+1 − Et)
∞∑
j=0

ρj∆ct+1+j − (Et+1 − Et)
∞∑
j=1

ρjrw,t+1+j

where ρ = 1−exp (c− w) is a log-linearization constant (c− w is the average log consumption-

wealth ratio). Rearranging, current consumption shocks can be expressed as

∆ct+1 − Et [∆ct+1] = rw,t+1 − Et [rw,t+1]

+ (Et+1 − Et)
∞∑
j=1

ρjrw,t+1+j

− (Et+1 − Et)
∞∑
j=1

ρj∆ct+1+j. (IA.4)

So far, we have only made use of modified Epstein-Zin preferences and the budget constraint.

We now use assumptions about consumption and time preference innovations. Due to our

homoscedasticity assumption, risk premia do not change over time, and the risk-free rate

only changes in response to time preference and consumption growth innovations. Thus,

innovations to expected returns can be decomposed as

(Et+1 − Et) rw,t+1+j = (Et+1 − Et) rf,t+1+j

= (Et+1 − Et) log

(
λt+j
λt+j+1

)
+

1

ψ
(Et+1 − Et) [∆ct+j+1] (IA.5)

for j ≥ 1. Substituting equation (IA.5) into equation (IA.4) yields

∆ct+1 − Et [∆ct+1] = rw,t+1 − Et [rw,t+1]

−
(

1− 1

ψ

)
(Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j
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+ (Et+1 − Et)
∞∑
j=1

ρj log

(
λt+j
λt+j+1

)
. (IA.6)

Substituting out consumption shock covariance (σic) from equation (6) yields risk premia as

a function of covariance with market returns and innovations to future time preferences and

consumption growth:

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσiw + (γ − 1)

1

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j

)

+
θ

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj log

(
λt+j
λt+j+1

))
. (IA.7)

This can be alternatively expressed as

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσiw −

γ − 1

ψ − 1
σih(λ) + (γ − 1)σih(c) (IA.8)

where

σih(λ) = covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj log

(
λt+j
λt+j+1

))

and

σih(c) =
1

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j

)

are the two different types of risk-free rate news covariance.

Equation (IA.8) is an intertemporal capital asset pricing model (ICAPM) pricing equa-

tion. As in Campbell (1993), risk premia are a function of covariance with the market return

and covariance with shocks to investment opportunities. Market return risk (σiw) is priced

by relative risk aversion (γ) as in other ICAPM models. Also consistent with other ICAPM

models, future interest rate covariance (σih(c) and σih(λ)) is priced only if γ 6= 1. Yet, the

two components of interest rate risk have different prices. Whereas σih(c) is priced by γ − 1,

σih(λ) is priced by − γ−1
ψ−1 . When ψ > 1, the prices have opposite signs, and if ψ is close to

1, time-preference risk is amplified relative to consumption growth risk. The key distinction

4



between equation (IA.8) and more standard ICAPM models such as Campbell (1993) is that

equation (IA.8) includes shocks to both consumption growth and time preferences. Because

Campbell (1993) assumes preferences are constant, there is no σih(λ) in his model, and σih is

equivalent to σih(c).

A.3 Extended consumption CAPM

The budget constraint can also be used to substitute out wealth portfolio return covari-

ance (σiw) from equation (6) by rearranging equation (IA.6) and using it to decompose σiw,

thereby yielding equation (9):

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσic + (γψ − 1)σih(c) −

γψ − 1

ψ − 1
σih(λ).

A.4 Augmented consumption

Another way to derive the ICAPM and extended CCAPM pricing equations is to change

notation to consider time preference shocks in the same units as consumption. Specifically,

consider augmented consumption, defined as

C̃t ≡ λ
1/(1−1/ψ)
t Ct. (IA.9)

With this notation change, equation (1) is transformed into standard Epstein-Zin preferences

with respect to augmented consumption. All of Campbell’s (1993) and Bansal and Yaron’s

(2004) results hold with respect to augmented consumption and returns measured in units

of augmented consumption. In particular, the augmented risk-free rate is

r̃f,t+1 = − log (δ) +
1

ψ
Et [∆c̃t+1]−

1− θ
2

σ2
w −

θ

2ψ2
σ2
c (IA.10)
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and the risk premium for any asset is given by

Et [r̃i,t+1]− r̃f,t+1 +
1

2
σ2
i = γσiw + (γ − 1)σih(c̃) (IA.11)

where tildes represent augmented consumption and returns. Using the identities r̃i,t+1 =

ri,t+1 + 1
1−1/ψ log

(
λt+1

λt

)
and ∆c̃t+1 = ∆ct+1 + 1

1−1/ψ log
(
λt+1

λt

)
, equations (IA.10) and (IA.11)

are equivalent to equations (5) and (IA.8).

A.5 Calibrated model solution

Albuquerque et al. (2016) solve the model using log-linear analytical approximations.

Let portfolio w be the overall wealth portfolio, which represents a claim to aggregate con-

sumption. Using Campbell and Shiller’s (1988) approximation for the return on the overall

wealth portfolio the log return to the wealth portfolio can be expressed as

rw,t+1 = κ0 + κ1zt+1 − zt + ∆ct+1 (IA.12)

where zt is the log wealth-consumption ratio at time t. Unknown linearization parameters

κ0 and κ1 are given by

κ1 =
exp (z)

1 + exp (z)
(IA.13)

κ0 = log (1 + exp (z))− κ1z (IA.14)

where z is the unconditional mean of zt. Returns to the market portfolio, which is a claim

to aggregate dividends, can be similarly approximated as

rm,t+1 = κm0 + κm1zm,t+1 − zm,t + ∆dt+1 (IA.15)

with unknown parameters κm0 and κm1 constructed the same way.
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Albuquerque et al. (2016) guess and verify that zt and zm,t linearly depend on state

variables, taking the form

zt = A0 + A1xt + A2ηt+1 + A3σ
2
t + A4∆ct (IA.16)

zm,t = Am0 + Am1xt + Am2ηt+1 + Am3σ
2
t + Am4∆ct + Am5∆dt, (IA.17)

and solve for the unknown coefficients as functions of the model parameters and κ0, κ1, κm0,

and κm1, which are functions of z and zm. Closed-form solutions for these coefficients are

reported in Albuquerque et al.’s internet appendix. One can then numerically iterate to find

fixed points for z and zm. Having solved for all coefficients, market returns in any period are

given by equation (IA.15). To complete the solution, Albuquerque et al. use the stochastic

discount factor (equation (2)), Euler equation, and equation (IA.12) to obtain the risk-free

rate as a function of state variables.

B Valuation risk in the cross section

I analyze cross-sectional valuation risk by sorting stocks based on their past return sen-

sitivity to risk-free rate shocks. Ideally, we would like to separately measure consump-

tion growth and time preference risk-free rate shocks. Given the unobservability of time

preferences and the imprecise and low-frequency nature of consumption data, measuring

aggregate risk-free rate shocks is probably the best we can do. While this does not for-

mally test the model, it assesses whether there is support in the cross section for valuation

risk. If exposure to risk-free rate shocks is not priced in the cross-section, this suggests

that valuation risk is not a major factor for explaining asset prices. The model informs

how we measure risk-free rate shocks. In particular, it highlights that investors care about

shocks to both current and expected future risk-free rates. Thus, instead of considering just

covt (ri,t+1, rf,t+2 − Et [rf,t+2]), I focus on σih = covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jrw,t+1+j

)
.

To assess sensitivity to valuation shocks, we need to estimate (Et+1 − Et)
∑∞

j=1 ρ
jrf,t+1+j.
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This estimation has two challenges. First, the focus is on real interest rates. This is the risk-

free rate in the model, and it is the relevant quantity for economic decisions. Unfortunately,

the real risk-free rate is not directly observable. To overcome this challenge, I model expected

Consumer Price Index (CPI) inflation and estimate the monthly real risk-free rates as the

difference between the nominal 1-month Treasury bill yield and expected inflation over the

next month. Baseline estimates focus on the 1983 to 2012 time period because monetary

policy is more consistent and inflation is less volatile during this period than in previous

periods.

A second empirical challenge is that valuation risk involves shocks to expectations. Thus,

we need to estimate interest rate expectations. I do this with a vector autoregression (VAR)

of interest rates, inflation, and other state variables. From the VAR, we extract an estimate

for the time series of (Et+1 − Et)
∑∞

j=1 ρ
jrf,t+1+j innovations, which I then use to estimate

σih for individual stocks.

B.1 Vector autoregression

The VAR model is

Yt = AYt−1 + εt. (IA.18)

Yt is a k×1 vector with the nominal 1-month Treasury bill log yield and seasonally adjusted

log CPI inflation over the past month as its first two elements. The remaining elements of

Yt are state variables useful for forecasting these two variables. The assumption that the

VAR model has only one lag is not restrictive because lagged variables can be included in

Yt. Before estimating the VAR, Yt is demeaned to avoid the need for a constant in equation

(IA.18).

Vector ei is defined to be the ith column of a k× k identity matrix. Using this notation,

expectations and shocks to current and future expectations can be extracted from Yt, A, and

εt. The real risk-free interest rate is estimated as the nominal 1-month Treasury bill yield

8



less expected inflation:

r̂f,t+1 = (e1′ − e2′A)Yt. (IA.19)

Similarly, expected future risk-free rates are

Et

[
r̂f,t+j

]
= (e1′ − e2′A)Aj−1Yt. (IA.20)

Shocks to current and expected risk-free rates are

(Et+1 − Et) ̂rf,t+1+j = (e1′ − e2′A)Aj−1εt+1. (IA.21)

Total interest rate news is

Newsh,t+1 = (Et+1 − Et)
∞∑
j=1

ρj ̂rf,t+1+j

= (e1′ − e2′A)
∞∑
j=1

ρjAj−1ωt+1

= (e1′ − e2′A) ρ (I − ρA)−1 ωt+1 (IA.22)

where I is the identity matrix and ρ is a log linearization coefficient equal to 1− exp (c− w)

where c− w is the average log consumption-wealth ratio. I use a monthly coefficient value

of ρ = 0.996 for the analysis.

To select state variables to include in Yt, I first follow Campbell (1996) and include the

relative Treasury bill rate, defined as the difference between the current one-month Treasury

bill yield and the average one-month Treasury bill yield over the previous 12 months. I

also include the relative monthly CPI inflation rate, defined the same way. Next, I include

the yield spread between 10-year Treasury bonds and 3-month Treasury bonds because the

slope of the yield curve is known to predict interest rate changes. Finally, I include the

CRSP value-weighted market return and the log dividend-price ratio (defined as dividends

over the past year divided by current price), which is known to predict market returns.
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These variables are useful to the extent that equity returns are related to expected future

interest rates. Equation (IA.18) can also be estimated with lags of Yt. Because the Bayesian

Information Criteria is insensitive to adding lags, I do not include lagged variables in Yt.

Table IA.2 reports coefficient estimates and standard errors for the elements of A related

to predicting nominal interest rates and inflation. The first two columns report results for

the 1983 to 2012 time period, which is the primary focus. Nominal interest rate shocks

are highly persistent with lag coefficient of 0.96. Inflation shocks are much less persistent

and have a lag coefficient of 0.07. Inflation is increasing in lagged nominal yields. The

VAR explains 95% of the variation in nominal yields over time. Inflation changes are less

predictable with an R-squared of 0.24.

Figure IA.1 plots the estimated real risk-free rate from the VAR model along with the

nominal one-month Treasury bill yield and the Federal Reserve Bank of Cleveland’s real

risk-free rate estimate.1 As one would expect in a stable inflation environment, real interest

rates generally follow the same pattern as nominal interest rates. Nonetheless, inflation

expectations do change over time, particularly late in the sample. The VAR real risk-free

rate estimate closely tracks the Federal Reserve Bank of Cleveland’s estimate.

As a robustness check, I also estimate real risk-free rates and real risk-free rate news over

a longer time period, starting in 1927. The methodology for the longer time period is the

same as before except that the CPI is unadjusted because the seasonally adjusted CPI is only

available starting in 1947. Columns (3) and (4) of Table IA.2 report the VAR results. In

the extended time sample, inflation shocks are more persistent (inflation’s lagged coefficient

is 0.78, compared to 0.07 before). The results are otherwise similar to the original VAR.

B.2 Cross-sectional results

To assess whether valuation risk is priced in the cross section, I sort stocks into port-

folios based on past covariance with risk-free rate news. Risk-free rate news covariance,

1The Federal Reserve Bank of Cleveland’s real risk-free rate estimates are described by Haubrich, Pen-
nacchi, and Ritchken (2008, 2012).
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σih = covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jrw,t+1+j

)
, is estimated on a rolling basis for all NYSE,

AMEX, and NASDAQ common stocks using returns and risk-free rate news over the past

three years, with the requirement that included stocks must have at least two years of histor-

ical data. Value-weighted decile portfolios are formed monthly by sorting stocks according

to those estimates.

Table IA.3 reports market capitalization, average excess returns, and βih = σih
σ2
h

estimates

for each portfolio. The table also reports pricing errors (alphas) relative to the CAPM and

Fama and French (1993) three factor model and factor loadings (betas) for the three factor

model. Panel A reports results for the baseline 1985-2012 time period.2 Risk-free rate news

betas increase across the portfolios, and decile 10’s news beta is a significant 0.58 higher

than decile 1’s news beta. Monthly excess returns are 42 bps lower in the 10th decile than in

the 1st decile, but this return difference is not statistically significant, and there is no clear

pattern to excess returns across the decile portfolios other than a drop in returns in decile 10.

CAPM and 3 Factor alphas follow the same basic pattern. Factor loadings are also similar

across the portfolios. The one exception is that decile 10 has a large negative loading on the

value factor (HML). In short, there is no evidence that valuation risk is priced in the cross

section of stock returns.

Results are similar in the extended 1929-2012 sample, reported in Panel B. Once again,

average excess returns and alpha estimates decrease with interest rate news exposure, but the

differences are not significant. The biggest difference between Panel A and Panel B is that

βih differences across the portfolios are not significant in the extended sample. This suggests

that stock-level valuation risk was not stable over time early in the sample, undercutting our

ability to form valuation risk portfolios.

2Portfolio formation is based on at least two years of historical data, which causes the sample to start
in 1985 instead of 1983.
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C Supplemental tables and figure

Table IA.1. Predictive regression coefficients

Description: This table reports simulated regression coefficients for the predictive regressions summarized
in Table 6. The reported results are from regressing future log excess equity returns (panel A), consumption
growth (panel B), dividend growth (panel C), and real risk-free rates (panel D) on the current log price-
dividend ratio. Regressions in the data are based on 1930–2008 annual historical data from the Bureau of
Economic analysis and CRSP. Simulation regressions are based on 100,000 simulations with time periods
equal to the historical data. The models are simulated monthly and then annualized for comparability
with the historical data. For the simulations, the table reports the median price-dividend ratio regression
coefficient and the % of simulated regression coefficients that are larger than the comparable regression
coefficient in the data. Standard errors are Newey-West with 2*(horizon-1) lags.
Interpretation: Predictive regressions show the extent to which the price-dividend ratios predicts subse-
quent returns, consumption growth, dividend growth, and risk-free rates in the data and model.

Data Benchmark model β̂ Extended model β̂

β̂ t R2 Median % > data Median % > data

Panel A. Excess returns
1 year -0.09 -1.80 0.04 -0.04 74.7% -0.04 80.9%
3 years -0.26 -3.23 0.17 -0.13 74.9% -0.12 80.7%
5 years -0.41 -3.78 0.27 -0.21 74.6% -0.20 80.4%

Panel B. Consumption growth
1 year 0.01 1.59 0.06 0.00 9.9% 0.03 97.5%
3 years 0.01 0.59 0.01 0.00 33.6% 0.09 99.5%
5 years 0.00 -0.06 0.00 0.00 51.2% 0.13 99.5%

Panel C. Dividend growth
1 year 0.07 1.98 0.09 0.01 0.5% 0.06 32.7%
3 years 0.11 1.33 0.06 0.01 5.7% 0.19 89.7%
5 years 0.09 1.21 0.04 0.01 19.8% 0.30 96.0%

Panel D. Risk-free rate
1 year 0.01 1.15 0.03 -0.13 0.0% -0.01 19.9%
3 years 0.03 0.82 0.03 -0.34 0.0% -0.02 24.6%
5 years 0.05 1.06 0.05 -0.49 0.0% -0.03 24.1%

13



Table IA.2. Vector autoregression results

Description: This table reports results from the vector autoregression (VAR) described by equation (IA.18).
The nominal log yield on a one-month Treasury bill is y1. Inflation is one-month log seasonally-adjusted
CPI inflation. Relative y1 and relative inflation are the difference between current yields and inflation and
average values over the past twelve months. The yield spread between 10-year Treasury bonds and 3-month
Treasury bills is y120 − y3. The excess return of the CRSP value weighted market return over the risk-
free rate is rm − rf . The log dividend-price ratio, d – p, is calculated for the CRSP value-weighted market
index using current prices and average dividends over the past twelve months. Results are for a 1-lag VAR of
demeaned y1, inflation, relative y1, relative inflation, rm−rf , and d – p. Coefficients for dependent variables
y1 and inflation are reported. The other dependent variables are omitted for brevity. Bootstrapped standard
errors are in parentheses. * represents 10% significance, ** represents 5% significance, *** represents 1%
significance.
Interpretation: Nominal interest rate shocks are highly persistent. Inflation shocks are less persistent and
less predictable.

1983–2012 1927–2012

y1 inflation y1 inflation

Lagged Variables
y1 0.9639*** 0.1939* 0.9741*** 0.0631

(0.0202) (0.1003) (0.0116) (0.0773)

inflation 0.0314 0.0737 0.0102* 0.7762***
(0.0297) (0.1734) (0.0062) (0.0709)

relative y1 -0.0976** 0.1295 -0.1752*** 0.5909***
(0.0457) (0.1585) (0.0407) (0.1599)

relative inflation -0.0136 0.3268* -0.003 -0.4554***
(0.0281) (0.1767) (0.0056) (0.0837)

y120− y3 -0.0032 -0.002 -0.0062** 0.0014
(0.0036) (0.0155) (0.0024) (0.0122)

rm − rf 0.0013* 0.0083* 0.0008** 0.0061*
(0.0007) (0.0042) (0.0004) (0.0034)

d – p 0.0001 0.0002 0.0000 -0.0002
(0.0001) (0.0005) (0.0000) (0.0003)

R2 0.95 0.24 0.95 0.32
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Table IA.3. Valuation risk pricing in the cross section of stock returns

Description: Value-weighted decile portfolios are formed at the end of each month by sorting stocks based
on covariance with risk-free rate news over the past three years. The table reports betas with respect to risk
free rate news, average size, and average excess returns for each portfolio. The table also reports results for
time series regressions of excess returns on excess market returns (the CAPM regression) and excess market
returns (rmrf), the Fama-French size factor (smb), and the Fama-French value factor (hml) (the 3 Factor
regression). The sample is NYSE, AMEX, and NASDAQ common stocks. Standard errors for the 10-1
portfolio difference are reported in parentheses. * represents 10% significance, ** represents 5% significance,
*** represents 1% significance.
Interpretation: Expected returns do not vary significantly across the decile portfolios.

Panel A. 1985–2012

rf News Market Cap Excess CAPM 3 Factor Factor Loadings (Betas)
Decile Beta ($B) Return Alpha Alpha rmrf smb hml

1 -0.17 0.72 0.63% -0.19% -0.16% 1.27 0.61 -0.06
2 0.07 1.36 0.94% 0.24% 0.30% 1.10 0.22 -0.15
3 -0.04 1.94 0.87% 0.25% 0.23% 1.04 0.07 0.04
4 0.13 2.42 0.65% 0.06% 0.03% 1.00 -0.04 0.09
5 0.00 2.74 0.51% -0.03% -0.05% 0.94 -0.10 0.03
6 0.02 2.76 0.48% -0.06% -0.08% 0.93 -0.14 0.05
7 0.03 2.58 0.54% -0.02% -0.04% 0.97 -0.11 0.03
8 0.15 2.21 0.68% 0.06% 0.08% 1.04 -0.13 -0.07
9 0.14 1.69 0.61% -0.06% -0.04% 1.10 0.01 -0.06
10 0.41 0.85 0.21% -0.62% -0.44% 1.21 0.55 -0.47

10-1 0.58** 0.13** -0.42% -0.42% -0.27% -0.06 -0.07 -0.41***
(0.23) (0.06) (0.33%) (0.34%) (0.34%) (0.08) (0.11) (0.12)

Panel B. 1929–2012

rf News Market Cap Excess CAPM 3 Factor Factor Loadings (Betas)
Decile Beta ($B) Return Alpha Alpha rmrf smb hml

1 -0.01 0.17 0.66% -0.05% -0.12% 1.15 0.52 -0.03
2 0.00 0.48 0.66% 0.04% 0.03% 1.04 0.20 -0.06
3 0.03 0.69 0.70% 0.13% 0.12% 0.99 0.08 -0.01
4 0.06 0.86 0.71% 0.15% 0.15% 0.96 0.02 0.00
5 0.01 0.98 0.60% 0.04% 0.02% 0.97 -0.03 0.06
6 0.03 1.05 0.56% -0.01% -0.03% 0.98 -0.03 0.09
7 0.06 1.08 0.58% -0.01% -0.02% 1.03 -0.08 0.08
8 0.06 1.05 0.56% -0.07% -0.10% 1.08 0.00 0.11
9 0.10 0.83 0.61% -0.07% -0.12% 1.15 0.04 0.17
10 0.11 0.38 0.58% -0.18% -0.27% 1.23 0.50 0.03

10-1 0.13 0.21*** -0.09% -0.13% -0.14% 0.07** -0.02 0.05
(0.09) (0.02) (0.18%) (0.18%) (0.18%) (0.03) (0.06) (0.05)
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Figure IA.1. Risk-free rate, 1983–2012
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Description: This figure plots the monthly nominal and real risk-free rate from 1983 to 2012. The nominal
risk-free rate is the yield on a one-month nominal treasury bill. The real risk-free rate is estimated using
VAR analysis. For comparison purposes, the Federal Reserve Bank of Cleveland’s real risk-free rate estimate
is also plotted.
Interpretation: Real risk-free rate estimates from the VAR model closely track estimates from the Federal
Reserve Bank of Cleveland and generally follow the same pattern as nominal interest rates.
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