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Abstract

Recent studies link mutual fund performance to measures of active management, and this

evidence often takes the form of large spreads in unconditional alphas for characteristic-sorted

portfolios. Unconditional benchmarks can, however, produce misleading inferences on man-

agerial skill for strategies that exhibit substantial turnover and unstable factor exposures. We

propose a performance attribution model that accounts for predictable changes in portfolio

style. Compared to existing methods, our benchmarks yield superior tracking performance and

a more powerful statistical assessment of abnormal returns. We reevaluate six active man-

agement proxies using our method and conclude that these measures are largely unrelated to

managerial ability.
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1 Introduction

Recent studies on the performance of equity mutual funds have produced an extensive list

of apparently successful strategies for identifying superior funds. In particular, several fund-level

characteristics that can be interpreted as managerial activeness proxies have been linked to mutual

fund performance. These proposed predictors include industry concentration (Kacperczyk, Sialm,

and Zheng (2005)), unobserved actions of funds (Kacperczyk, Sialm, and Zheng (2008)), active

share (Cremers and Petajisto (2009)), mutual fund R2 (Amihud and Goyenko (2013)), active weight

(Doshi, Elkamhi, and Simutin (2015)), and fund return volatility (Jordan and Riley (2015)). Taken

together, these studies imply that it is quite feasible to ex ante identify skilled fund managers using

observable fund characteristics.1

In this paper, we propose a new method to evaluate the conditional performance of characteristic-

sorted portfolios of mutual funds and apply this framework to the literature on predictors of fund

performance. Our benchmarking procedure leads to dramatically different conclusions regarding

the ex ante identification of superior managerial skill. For some background, a common empirical

approach in the papers cited above is to sort mutual funds into portfolios based on the proposed

predictor variable and evaluate the performance of the resulting trading strategies. This analy-

sis typically involves computing style-adjusted returns via time-series regressions of the portfolio

returns on market, size, value, and momentum factors (i.e., Carhart (1997) four-factor model re-

gressions). Realized portfolio returns are effectively decomposed into a component that reflects the

return that could be earned from exposures to the four passive benchmark factors and a residual

component (i.e., alpha). The key evidence for distinguishing a useful predictor is that the extreme

portfolios exhibit an economically large and statistically significant difference in alphas.2

A potential concern with the findings outlined above relates to the benchmarking procedure

used to style-adjust the portfolio returns. Specifically, for each of the proposed predictors, the

identity of the “skilled” funds changes through time. The associated strategies are designed to

maintain exposure to the skilled managers by trading in and out of individual mutual funds over the

sample period. As the portfolios are rebalanced each month, however, these strategies can exhibit

1Consistent with the practice in most prior studies on mutual funds, we use the term “skill” to refer to the net
fund alpha, i.e., the average abnormal fund return net of expenses and fees. Recently, Berk and van Binsbergen
(2015) have argued that a fund manager’s skill is reflected in a value added measure, namely, the fund’s gross return
in excess of its benchmark multiplied by the assets under management. Because our paper specifically addresses prior
studies that examine predictors of fund alphas, our focus is on the proper assessment of fund performance as reflected
in the alpha measure.

2Kacperczyk and Seru (2007) show that a mutual fund manager’s reliance on public information, which can also
be interpreted as a proxy for activeness, has predictive content for mutual fund performance. The findings in this
study, however, are not based on the unconditional Carhart (1997) regression approach.

1



pronounced shifts in both the identity of the constituent funds and their underlying factor exposures.

Importantly, these changes in portfolio loadings can occur solely as a result of portfolio turnover,

even if the underlying mutual funds are not adjusting their factor exposures over time. These style

dynamics are not reflected in the standard Carhart (1997) four-factor benchmarking approach,

which assigns constant exposures to a given strategy over the full sample period. Consequently,

the reported alphas and apparent managerial skill may simply reflect portfolio style drift and a

benchmark model that performs poorly in tracking the strategy returns.

To address this concern, we extend the conventional conditional performance evaluation frame-

work to account for these predictable changes in style exposures. Our approach builds on the

traditional implementation of conditional performance evaluation (e.g., Ferson and Schadt (1996),

Ferson (2010), and Ferson (2013)), in which one or more of a portfolio’s factor loadings is mod-

eled as a linear function of state variables, such as the dividend yield, default spread, and term

spread. These variables have a long history of use in forecasting asset returns (e.g., Fama and

French (1989)), and the motivation for including them in a conditional benchmark is to control for

mechanical factor timing strategies based on publicly available information. As Ferson and Schadt

(1996) explain, any portfolio strategy that can be replicated using such information should not be

deemed as having superior performance. Our innovation is to replace or complement the traditional

conditioning variables with another set of instruments based on lagged factor loading estimates for

a strategy’s constituent mutual funds. We specifically propose using the portfolio-weighted average

lagged factor loadings across funds held in a particular portfolio as instruments for that portfolio’s

exposures in a Carhart (1997) model regression. The use of lagged loadings as instruments for

conditional factor exposures was first proposed by Boguth, Carlson, Fisher, and Simutin (2011),

who employ this method to reexamine the performance of stock momentum strategies.

Our proposed approach has several attractive features. First, it is easy to implement, as it is

based on standard time-series regression methods used in the mutual fund literature. Second, the

lagged factor loadings allow the researcher to incorporate a powerful source of publicly available

information in predicting future style exposures and benchmarking performance. In particular,

these instruments provide a simple way to pick up high-frequency shifts in style (e.g., at portfolio

rebalancing dates) that would be missed by traditional conditioning variables, such as the dividend

yield, which tend to be much more persistent in nature. In our empirical applications, we show

that models with lagged loadings as instruments exhibit pronounced improvements in tracking

strategy returns over unconditional Carhart (1997) model regressions and models with traditional

conditioning variables. Third, our method leads to an intuitive decomposition of a given strategy’s
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unconditional alpha, which tends to be the focus of prior literature as noted above, into performance

in security selection (i.e., the conditional alpha), factor timing, and volatility timing. As noted

by Ferson and Mo (2016), measures of selectivity that ignore managerial ability in timing either

factor returns or factor volatility suffer from an omitted variable bias. Boguth, Carlson, Fisher, and

Simutin (2011) make a similar point regarding the importance of market timing and volatility timing

in returns-based instrumental variables tests. Finally, because our conditional models with lagged

factor loading instruments lead to improved tracking performance (i.e., markedly higher time-series

regression R2s), this approach also produces extremely precise conditional alpha estimates. As

such, our tests have increased statistical power to identify skill in security selection among the

strategies of interest.

To demonstrate the usefulness of our approach, we reevaluate an important set of existing results

on the predictive content of mutual fund manager activeness. The general conclusion from existing

studies is that fund managers who take more active bets in their portfolios tend to outperform. For

example, Cremers and Petajisto (2009) and Doshi, Elkamhi, and Simutin (2015) develop holdings-

based measures of a manager’s tendency to deviate from benchmark portfolio weights and find

that active share and active weight, respectively, are positive predictors of fund alphas. Similarly,

Kacperczyk, Sialm, and Zheng (2005) show that funds that are more concentrated across industries

earn higher alphas. Amihud and Goyenko (2013) produce complementary results using a measure

of activeness based on mutual fund returns. They specifically find that funds with low R2 values

from Carhart (1997) four-factor regressions subsequently outperform funds with high R2s. Finally,

Kacperczyk, Sialm, and Zheng (2008) introduce the return gap measure, which can be interpreted

as a proxy for activeness, and show that funds earning higher returns than a passive investment

in their recently disclosed holdings also earn higher future alphas.3 One recent paper producing

seemingly contradictory results is Jordan and Riley (2015), who find that lagged mutual fund

volatility exhibits a pronounced inverse relation to unconditional alpha.

This literature provides a natural arena to apply our conditional performance evaluation meth-

ods, given the prior emphasis on unconditional Carhart (1997) model regressions. As such, we

examine the ability of R2, active share, active weight, volatility, industry concentration, and re-

turn gap to predict mutual fund performance. Our empirical results focus on evaluating monthly

rebalanced decile portfolios formed on each of these six predictor variables. Following the con-

vention in prior studies, much of our empirical analysis centers on assessing the performance of

3The positive association between activeness and future performance is not isolated to mutual funds. Titman and
Tiu (2011) and Sun, Wang, and Zheng (2012) show that hedge funds following unique investment strategies have
superior investment ability.
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hypothetical strategies that take long and short positions in the extreme portfolios sorted on a

given characteristic.

For our primary tests, we extend the sample period from each of the original studies through

December 2015. The point estimates of unconditional alpha across the six long-short activeness

strategies are economically large, ranging from 1.37% to 6.17% per year. All six of these esti-

mates are statistically significant at conventional levels. We further demonstrate, however, that

the extreme portfolios sorted on the proxies for mutual fund activeness exhibit considerable port-

folio turnover, which leads to predictable shifts in style exposures over the sample period. As an

example, the low-R2 and high-R2 deciles in the R2 strategy require annualized portfolio turnover

of 135% and 147%, respectively. We also find that the superior performance for each of the six

long-short strategies is concentrated over short sample windows, and these periods often correspond

with discrete changes in investment styles due to portfolio rebalancing. These results raise the pos-

sibility that the prior evidence on superior performance for the strategies of interest is attributable

to poorly specified benchmark models, rather than skill in security selection.

Consistent with this possibility, we find limited evidence that fund activeness is associated with

future performance relative to our conditional benchmarks that account for predictable shifts in

style. The conditional alphas for the long-short portfolios range from 0.07% to 1.61% per year,

with an average reduction in magnitude of 61% in comparison to their corresponding unconditional

estimates. Across the six predictors, the only statistically significant conditional alphas are earned

by the active weight (10% significance level) and return gap (1% significance level) strategies.

We further demonstrate that our findings are robust to alternative approaches to constructing

instruments for our conditional models. Across a wide range of empirical specifications, conditional

models deliver superior tracking performance relative to unconditional benchmarks and reliably

lead to significant reductions in abnormal returns for the long-short activeness portfolios. As such,

the evidence suggests that proxies for managerial activeness bear little relation to security selection

ability, in contrast to the claims in prior studies.

We also compare our conditional models based on lagged factor loading instruments to the

traditional approach to conditional performance evaluation, in which portfolio factor loadings are

modeled as a function of macroeconomic variables. We find that the models featuring lagged

loadings exhibit meaningful advantages in terms of model fit, as evidenced by their adjusted-R2

values. In many cases, the conditional alpha estimates differ considerably across the two approaches,

suggesting that our conclusions on managerial ability would be missed by simply following the

conditional approach adopted in prior literature.
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Finally, we present decompositions of the unconditional alphas for the six long-short strategies

into factor timing, volatility timing, and security selection effects. In most cases, we find that the

large unconditional alphas for these portfolios are primarily attributable to factor timing. That is,

whereas the strategy portfolios tend to have relatively high conditional exposures to the benchmark

factors in periods when these factors earn high returns, there is limited evidence that their superior

performance is linked to ability in security selection. An important question is whether this apparent

success in factor timing is attributable to managers of the underlying funds skillfully shifting their

exposures over time or simply to a given strategy’s rebalancing procedure. Our results are more

consistent with the latter explanation. For those strategies exhibiting significant factor timing

ability, most of this performance is concentrated over a few sample months in the period just

preceding and/or subsequent to the crash in technology stocks in March 2000. Using a detailed

analysis of portfolio holdings, we show that, while several of the mutual fund strategies successfully

adjust their weights in technology stocks over this period, the constituent mutual funds do not.

Thus, none of the individual predictors appears to robustly identify managers with factor timing

ability.

The paper contributes to an extensive literature on the performance evaluation of managed

portfolios. From an economic perspective, we provide evidence that the link between managerial

activeness and mutual fund performance is tenuous at best. The nature of our results indicates

that properly specifying conditional benchmarks is critical for making inferences about skill in

active management. Conceptually, our conditional benchmarking approach is similar in spirit to

those of Daniel, Grinblatt, Titman, and Wermers (1997) and Ferson and Mo (2016), which use

fund holdings information to track the dynamic investment styles of the funds being evaluated.4

However, unlike their benchmarks, our conditional models evaluate performance based on fund

returns, which can be advantageous in accounting for non-equity positions, stale holdings data,

and realized trading costs. Ferson and Mo (2016) also decompose fund performance into security

selection, factor timing, and volatility timing components using holdings data, and our approach

complements theirs by providing a returns-based alternative for this decomposition. Finally, our

study builds on the conditional performance evaluation framework introduced by Ferson and Schadt

(1996), and we find that lagged factor loading instruments considerably outperform traditional

4In related work, a number of studies have sought to model the dynamic factor exposures of mutual funds and
hedge funds using a variety of techniques. Mamaysky, Spiegel, and Zhang (2008) use a Kalman filter-based model
to track the dynamic factor loadings of mutual funds. Bollen and Whaley (2009) employ an optimal changepoint
detection framework to identify potential shifts in the factor exposures of hedge funds. More recently, Patton and
Ramadorai (2013) use high frequency conditioning variables to capture within-month variation in the risk exposures
of hedge funds.
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instruments in tracking portfolio returns. A byproduct of this improved tracking ability is an

increase in test power, such that this method is an important tool for investors and researchers who

wish to identify significant predictors of managerial skill.

The remainder of the paper is organized as follows. Section 2 details our sample selection pro-

cedures and construction of the mutual fund strategies based on proxies for managerial activeness.

Section 3 introduces our estimation approach for performance evaluation and contrasts it with ex-

isting methods. Section 4 presents our results on the performance of the mutual fund portfolios,

and Section 5 concludes.

2 Data

Section 2.1 provides details on our mutual fund sample. Section 2.2 introduces the fund-level

proxies for active management and describes the construction of mutual fund portfolios formed on

these activeness measures.

2.1 Sample construction

We obtain data on monthly mutual fund returns from the CRSP Survivor-Bias-Free US Mutual

Fund Database for the period April 1980-December 2015. These returns are net of fees, expenses,

and brokerage commissions but before any front-end or back-end loads. We convert all net returns

to excess returns by subtracting the corresponding risk-free rate.5 We also collect data on fund

characteristics, including total net assets, expense ratio, turnover, and percentage of the portfo-

lio invested in common stocks, preferred stocks, bonds, cash, and other securities. We use the

MFLINKS database to identify funds with multiple share classes and combine these share classes

into portfolios. A fund’s total net assets for a given period is the sum of total net assets across

share classes, and the fund’s returns and other characteristics are asset-weighted averages.

To limit the sample to domestic actively managed equity funds, we follow the approach in

Doshi, Elkamhi, and Simutin (2015) and screen on the investment style codes from CRSP (i.e.,

crsp obj cd). We check the dataset for index funds and eliminate these observations from the

sample. We also eliminate balanced funds, bond funds, international funds, sector funds, funds

with missing names, and funds that have less than 80% of their holdings on average in common

5We obtain data on daily and monthly factor returns (i.e., the market, size, value, and momentum fac-
tors from the Carhart (1997) four-factor model) and the risk-free rate from Kenneth French’s website. See
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth French for making these data avail-
able.
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stocks. We include two additional screens to address potential concerns related to incubation bias

(e.g., Evans (2010)). First, we delete any fund-month observation that precedes the fund’s first offer

date as recorded in the CRSP database. Second, we only include funds in the strategy portfolios if

their total net assets exceeds $15 million at the portfolio formation date.

2.2 Proxies for active management

In our empirical tests, we focus on six widely used measures of active management. Each

of these variables has been shown in prior literature to predict cross-sectional differences in fund

performance. Several of the activeness measures require data on fund holdings, which we obtain

from the Thomson Reuters Mutual Fund Holdings Database and link to the CRSP mutual fund

database using MFLINKS. The fund holdings database also contains stock-level identifiers, which

we use to link to the CRSP Monthly Stock File to obtain SIC codes, exchange codes, market

capitalizations, and returns for individual holdings.

We construct each of the following fund-level proxies for activeness on a monthly basis. The

start of the sample period for a given measure corresponds to the start date of the portfolio analysis

in the original article introducing that characteristic as a predictor of mutual fund performance.

• R2. Following Amihud and Goyenko (2013), we estimate the R2 from a regression of mutual

fund excess returns on the four Carhart (1997) factors using the prior 24 months of data. We

require funds to have a valid return for each of the prior 24 months, and the sample period

for R2 is January 1990-December 2015.

• Active share (AS). Following Cremers and Petajisto (2009), active share for mutual fund

i at the end of month t is defined as

ASi,t =
1

2

J∑
j=1

|wj
i,t − w

j,b
i,t |, (1)

where wj
i,t is the equity portfolio weight of stock j in fund i, wj,b

i,t is the equity portfolio weight

of stock j in the fund’s benchmark index, and the sum is taken across the universe of all

stocks. Cremers and Petajisto (2009) consider a total of 19 candidate benchmark indexes,

and a given fund’s benchmark is defined as the one that minimizes its active share. We use

an updated version of active share from Martijn Cremers’ website that allows for 58 potential
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benchmark indexes.6 The sample period for active share is January 1990-December 2015.7

• Active weight (AW ). Following Doshi, Elkamhi, and Simutin (2015), we compute active

weight for mutual fund i at the end of month t as

AWi,t =
1

2

J∑
j=1

|wj
i,t − w

j,m
i,t |, (2)

where wj,m
i,t is the equity portfolio weight of stock j in a market capitalization-weighted port-

folio of the stocks in fund i. We require funds to hold at least 10 stocks, and the sample

period for active weight is April 1980-December 2015.

• Volatility (V ol). Following Jordan and Riley (2015), we compute volatility as the standard

deviation of daily mutual fund returns over the prior 12 months. We require funds to have

a valid return for each trading day over that period. Data on daily fund returns are from

the CRSP daily mutual fund return file, which starts in September 1998. We use January

1999-December 1999 as the initial estimation window for computing fund-level volatility, and

the sample period for this measure is January 2000-December 2015.

• Industry concentration (ICI). Following Kacperczyk, Sialm, and Zheng (2005), we com-

pute industry concentration index for mutual fund i at the end of month t as

ICIi,t =
10∑
n=1

(wn
i,t − w̄n

t )2, (3)

where wn
i,t is equity portfolio weight of industry n in fund i and w̄n

t is the weight in industry n

for the total stock market. We use data on the 48-industry classification, available on Kenneth

French’s website, and Table AI in the Appendix of Kacperczyk, Sialm, and Zheng (2005) to

map stock-level SIC codes into the ten industries required to compute industry concentration.

We require funds to hold at least 10 stocks, and the sample period for industry concentration

is January 1984-December 2015.

• Return gap (RetGap). Following Kacperczyk, Sialm, and Zheng (2008), we compute

6See http://activeshare.nd.edu. Cremers and Pareek (2016) present a detailed description of the data construction,
and we thank Martijn Cremers for making these data available.

7Our results are robust to using Cremers and Petajisto’s (2009) original measure of active share based on 19
benchmarks. These data are available on Antti Petajisto’s website at http://www.petajisto.net/data.html. We focus
on the updated version of active share because the original measure is only available through December 2009. Our
results are also robust to using a version of active share based on each fund’s self-reported benchmark, as in Petajisto
(2013).
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return gap as the difference between a fund’s monthly gross return and the return of its

most recently reported holdings, averaged over the prior 12 months. The Thomson Reuters

Mutual Fund Holdings Database includes only common stock positions, and we adjust the

fund holding returns to account for returns on other asset classes. We specifically assume

that bonds and preferred stocks earn the return of the Barclays U.S. Aggregate Bond Index

and that cash and other assets earn the risk-free rate. We require funds to hold at least 10

stocks, and the sample period for return gap is January 1984-December 2015.

Our empirical results are based on six sets of test portfolios. For each of the proxies for man-

agerial activeness, we construct a standard set of decile portfolios based on a one-way sort. The

portfolios are equal weighted and rebalanced monthly. As discussed below, our conditional bench-

marking approach uses data on fund holdings to construct lagged factor loading instruments. We

therefore only include funds in the portfolios for a given month if they have reported their holdings

within the prior 12 months. In the tables that follow, we often focus on the performance of the

top and bottom deciles for each measure of activeness. Following the convention in the literature,

we also assess the performance of hypothetical long-short strategies that take positions in each of

these extreme groups. Amihud and Goyenko (2013) and Jordan and Riley (2015) show that R2

and volatility, respectively, are negatively related to future fund performance. As such, we form

low-minus-high strategies based on these two predictors. The remaining four proxies are posi-

tive predictors of performance, so we consider a high-minus-low portfolio based on each of these

variables.

3 Performance evaluation methods and conditioning variables

In this section, we introduce our method for conditional performance evaluation and contrast

it with the unconditional and conditional factor regression approaches traditionally applied in the

literature. Section 3.1 develops our conditional approach to assessing the performance of mutual

fund strategies. Section 3.2 discusses conditioning variables based on lagged estimates of strategy

factor loadings, and Section 3.3 provides information about the traditional instruments that are

used in some of our conditional models.
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3.1 Conditional approach to assessing performance

The returns for mutual fund strategies are often benchmark-adjusted using an unconditional

Carhart (1997) four-factor model regression,

Ri,t = αU
i + βUi RMKT,t + sUi RSMB,t + hUi RHML,t + uUi RUMD,t + εi,t, (4)

where Ri,t is the excess return for portfolio i in month t, RMKT,t is the return on the market factor,

RSMB,t and RHML,t are the size and value factors of the Fama and French (1993) three-factor

model, and RUMD,t is a momentum factor. In the spirit of Sharpe (1992), this approach serves to

decompose the realized return for a given strategy into two components—a component that reflects

the return that could be earned from suitable exposures to the four passive benchmark factors and a

residual component (i.e., the unconditional alpha, αU
i ) that is often interpreted as managerial skill.

Such an approach, however, inherently assumes that the appropriate benchmark portfolio retains

constant exposures to the underlying factors. Whereas this assumption is arguably reasonable for

benchmarking an individual mutual fund, the results in the literature for predictors of mutual fund

performance are typically based on portfolios of funds. These portfolios require trading in and out

of individual funds, which often leads to considerable variation in factor exposures.

Ideally, the benchmarks applied to these strategies in assessing managerial performance would

account for any predictable changes in factor exposures over time. Conditional benchmarks are

likely to track a given strategy’s returns better than unconditional benchmarks if factor exposures

are time varying.8 Further, applying the framework of Hansen and Richard (1987) to mutual

fund performance evaluation, it is possible for fund managers to appear to have skill relative to

unconditional benchmarks but to show no skill after conditioning on the investor information set.

More specifically, we know from the asset pricing literature that an unconditional portfolio alpha

may be a biased estimate of the conditional alpha if factor loadings vary systematically with the

expected returns (i.e., “factor timing”) or volatilities (i.e., “volatility timing”) of the factors (see,

e.g., Grant (1977), Jagannathan and Wang (1996), Lewellen and Nagel (2006), and Boguth, Carlson,

Fisher, and Simutin (2011)).

In the context of mutual fund performance evaluation, the conditional alpha is a direct measure

of skill in security selection. The unconditional alpha, on the other hand, will also reflect factor

8For a simple example, consider a strategy that invests entirely in mutual funds implementing value strategies over
the first half of the sample period and invests entirely in growth-oriented funds over the second half of the sample.
The resulting estimate of the value factor loading, ĥU

i , from the unconditional benchmark in equation (4) might be
close to zero, but such a benchmark would likely perform poorly in tracking the strategy’s returns.

10



timing and volatility timing effects. Factor timing has been extensively considered in the mutual

fund literature, originating with Treynor and Mazuy (1966), Grant (1977), and Henriksson and

Merton (1981).9 In addition, Busse (1999) considers the ability of mutual fund managers to time

market volatility. Success in factor timing and volatility timing adds value for investors, but timing

effects for a given strategy portfolio may or may not indicate managerial timing skill.10 We discuss

this issue in detail in Section 4.5.

A standard conditional approach to assessing performance is to estimate a version of the Carhart

(1997) model that allows factor loadings to vary over time. We assume that the conditional alpha

is constant and that the conditional portfolio factor loadings are linear in a set of conditioning

variables (e.g., βCi,t ≡ λi,0 + λ′i,1Z
MKT
i,t−1 ). Specifically, we measure the conditional alpha of each

portfolio using the regression,

Ri,t = αC
i + (λi,0 + λ′i,1Z

MKT
i,t−1 )RMKT,t + (γi,0 + γ′i,1Z

SMB
i,t−1 )RSMB,t

+ (ηi,0 + η′i,1Z
HML
i,t−1 )RHML,t + (νi,0 + ν ′i,1Z

UMD
i,t−1 )RUMD,t + εi,t, (5)

where Zk
i,t−1 is an ni,k × 1 vector of instruments that can vary across portfolios and factors. Im-

portantly, Zk
i,t−1 is in the investor information set at the beginning of period t.

This method of measuring mutual fund performance using conditional factor models was first

developed by Ferson and Schadt (1996). The traditional approach in the literature is to use macroe-

conomic state variables, such as the dividend yield and interest-rate related variables, as instruments

for portfolio factor loadings. Our innovation is to borrow from recent advances in the asset pricing

literature and add lagged averages of estimated factor loadings for constituent funds as conditioning

variables.

For some background on this approach, Lewellen and Nagel (2006) advocate measuring condi-

tional portfolio risk with contemporaneous short-window regression betas to avoid problems asso-

ciated with conditioning on a subset of the information available to investors. Boguth, Carlson,

Fisher, and Simutin (2011) show that this method may cause an “overconditioning” bias because

the short-window betas are not known to investors at the beginning of the period. Lagged portfolio

9A partial list of additional studies on market timing by mutual funds includes Henriksson (1984), Jagannathan
and Korajczyk (1986), Ferson and Schadt (1996), Becker, Ferson, Myers, and Schill (1999), and Jiang, Yao, and Yu
(2007). Avramov and Chordia (2006) account for predictability in the security selection and factor timing skills of
managers.

10For a mutual fund that strategically shifts its exposures to the benchmark factors over time, the intercept from
equation (4) will reflect ability in both timing and security selection. For a portfolio of mutual funds, however, an
unconditional alpha that results from predictable changes in factor loadings attributable to portfolio rebalancing is
not direct evidence of managerial skill in timing the factors.
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loadings are, however, in the investor information set, and Boguth, Carlson, Fisher, and Simutin

(2011) demonstrate that these variables serve as good instruments for factor exposures of stock

portfolios in tests similar to equation (5).11

Estimating conditional benchmarks using lagged loadings as instruments has not yet been ap-

plied in the mutual fund literature, but the method is particularly well suited for this setting.

Directly using recent factor loadings to predict exposures will perform better when the factor load-

ing estimates have low levels of measurement error. Because mutual funds are diversified portfolios,

the factor loadings of funds and strategies that form portfolios of funds can be estimated relatively

precisely over short periods.12 Further, the mutual fund strategies evaluated in the literature often

require frequent rebalancing and changes in the identity of constituent funds. The lagged loading

instruments we design in Section 3.2 are based on the estimated exposures of mutual funds that

are currently in a given strategy portfolio, so these instruments rapidly adjust to the inclusion of

new funds. Traditional instruments based on macroeconomic variables, on the other hand, tend to

move at business cycle or lower frequencies, such that they may provide a poor fit to the short-

term movements in factor loadings that result from rebalancing. Finally, choosing instruments for

conditional models is subjective and can lead to data-mining concerns (e.g., Ferson, Sarkissian,

and Simin (2008) and Cooper and Gubellini (2011)), whereas using lagged loading estimates as

conditioning information for factor loadings removes much of the subjectivity from the method.

In our empirical analysis, we measure the unconditional and conditional performance of port-

folios formed on proxies for mutual fund manager activeness. We estimate the models in equations

(4) and (5) using the generalized method of moments (GMM). Each of these regression models is

exactly identified, and the GMM parameter estimates correspond to ordinary least squares esti-

mates. We estimate standard errors using the approach in White (1980) to account for potential

heteroskedasticity. For each measure of activeness, we consider a hypothetical long-short strategy

that is predicted to produce positive unconditional performance based on results in prior litera-

ture. Our main tests assess whether the conditional alpha of the long-short portfolio, αC
∆, for each

sorting variable is equal to zero. We also assess whether these conditional alphas are significantly

smaller than their unconditional counterparts by testing the null hypothesis αC
∆ = αU

∆ against the

11An alternative approach that employs lagged portfolio betas as direct proxies, rather than as instruments for
conditional portfolio risk exposures, is also problematic if portfolio risk changes predictably between the prior period
and the current holding period (see, e.g., Chan (1988), Grundy and Martin (2001), and Boguth, Carlson, Fisher, and
Simutin (2011)).

12One potential concern is that stale pricing can lead to downward biased estimates of factor loadings (e.g., Dimson
(1979)), particularly for portfolios of small-cap funds. The regression model in equation (5) implicitly controls for
this bias, as lagged loadings are used as instruments, which are rescaled in estimating the model, rather than as direct
proxies for conditional exposures.
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alternative αC
∆ < αU

∆.13 Given that investors cannot take short positions in mutual funds, we also

perform analogous tests for the performance of the long leg portfolio for each strategy. Finally, we

compare inferences from conditional models that use lagged factor loading instruments with models

using traditional instruments from prior literature in equation (5).

3.2 Lagged factor loading instruments

Our base specification uses lagged three-month factor loading estimates as conditioning variables

in equation (5). To construct these lagged factor loading instruments for each strategy portfolio, we

first estimate the loadings for each of the mutual funds in the portfolio. We develop two methods for

estimating fund factor loadings. The first approach directly uses daily fund-level excess returns and

factor returns to estimate an unconditional Carhart (1997) model regression over the most recent

three-month period. The CRSP daily mutual fund return file starts in September 1998. Thus, these

factor loading estimates are available for the full sample period for the volatility strategy, but they

are unavailable in the early part of the sample for the remaining five strategies. To overcome this

data limitation, the second approach estimates fund factor loadings using data on fund holdings

and returns from the CRSP Daily Stock File. Specifically, we first estimate unconditional Carhart

(1997) factor loadings for each stock over the prior three-month period. We then use the most

recently reported holdings for each mutual fund to estimate fund factor loadings as the weighted

average of the estimated stock-level factor loadings. In computing these fund-level loadings at the

end of month t − 1, we adjust the stock-level weights to account for changes in the market value

of securities between the holdings date and time t − 1. Given the availability of data on mutual

fund holdings and daily stock returns, we are able to produce these fund factor loading estimates

throughout the full sample for each strategy. Finally, the average factor loadings across funds in a

strategy portfolio are estimates of the lagged three-month loadings βL3
t−1, sL3

t−1, hL3
t−1, and uL3

t−1 for

the portfolio.14

Each set of lagged factor loading instruments has potential advantages and drawbacks relative

to its alternative. A clear advantage of the holdings-based measure is that it is available for each

strategy’s full sample period, whereas the instruments based on daily mutual fund returns data

are first available in January 1999. Within a given sample period, either approach could produce

13The primary advantage of our GMM estimation approach is that we are able to easily conduct this cross-
equation hypothesis test. The test specifically involves estimating the models in equations (4) and (5) in a single
GMM procedure. See Appendix A.5 in Boguth, Carlson, Fisher, and Simutin (2011) for details.

14The approach to calculating a portfolio’s betas based on the estimated betas of its constituent assets is referred
to as the “lagged component” approach by Boguth, Carlson, Fisher, and Simutin (2011).
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better predictors of realized strategy factor loadings. If fund holdings data provide a more up-to-

date view of the current portfolio relative to the past three months of historical fund returns data,

the holdings-based instruments may outperform the measures based on fund returns. Alternatively,

the method that directly uses fund returns may better forecast strategy loadings if holdings are

relatively stale or if funds rely on dynamic trading strategies that affect fund betas but are not

reflected in a snapshot of fund holdings. Further, holdings data only cover stock positions, whereas

factor loading estimates based on fund returns reflect holdings of cash and other non-stock assets.

Figure 1 shows lagged factor loading instruments for the low-R2 strategy portfolio. The panels

plot the holdings-based and returns-based instruments for each of the Carhart (1997) four factors.

As discussed above, the returns-based instruments are available beginning in January 1999, and the

holdings-based measures are shown for the January 1990-December 2015 period. The two sets of

instruments are visually quite similar across the factors. The most noticeable difference is that the

lagged factor loadings from the returns-based approach tend to be shifted toward zero relative to the

holdings-based measures. This finding primarily reflects fund holdings in cash, which reduces the

magnitude of fund factor exposures. The conditional performance evaluation method in equation

(5) implicitly adjusts for this effect by rescaling the lagged factor loading instruments to model the

factor exposures of a given strategy portfolio. The two instruments in each panel otherwise display

very similar patterns for long-term and short-term shifts in factor exposures. Figure 1 also provides

preliminary evidence that accounting for time variation in strategy factor exposures is important

given the volatility of the factor loading estimates over time.

We further study the efficacy of returns-based and holdings-based instruments in Section 4.3

by comparing the fit of conditional models that use a given set of instruments. Returns-based in-

struments tend to provide better model fit over the January 1999-December 2015 period, but both

approaches yield significantly better tracking performance relative to the unconditional models. In

our base specification, we use returns-based instruments for the volatility strategy because they

are available for the full sample period, and we use holdings-based instruments for the remaining

strategies. We also investigate shorter-term and longer-term instruments that are formed analo-

gously to the three-month instruments, but have alternative measurement periods. In particular,

we construct lagged instruments using daily return regressions over periods ranging in length from

one month to 12 months, and we form 24-month factor loading instruments for each portfolio using

monthly return regressions. In some empirical tests, we include both shorter-term and longer-term

lagged factor loadings as conditioning variables for the matching factor loading in equation (5).
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3.3 Traditional instruments

In Section 4.4, we contrast conditional models that are based on lagged factor loading instru-

ments with models that employ standard conditioning variables. These traditional state variables

include the dividend yield, default spread, and term spread. The dividend yield is the sum of

dividends accruing to the CRSP value-weighted market portfolio over the prior 12 months divided

by the current index level. The default spread is the difference in yields between Moody’s Baa-

and Aaa-rated bonds, and the term spread is the difference between the 10-year Treasury constant

maturity rate and the one-year Treasury constant maturity rate. All bond yields are obtained from

the Federal Reserve Bank of St. Louis website.15

4 Results

In this section, we apply the empirical methods introduced in Section 3 to examine the perfor-

mance of the decile portfolios formed on the activeness proxies. Section 4.1 provides unconditional

performance measures and discusses strategy portfolio characteristics that motivate the use of

conditional models to evaluate portfolio performance. Section 4.2 presents our base conditional

performance evaluation results, and Section 4.3 investigates conditional models with alternative

lagged factor loading instruments. Section 4.4 compares our approach based on lagged factor

loadings to those adopted in prior studies using traditional instruments. Section 4.5 introduces a

decomposition to understand the sources of unconditional alphas for the mutual fund portfolios.

4.1 Unconditional performance evaluation

Table I reports unconditional Carhart (1997) model regression estimates for the long-short

strategies of interest. The unconditional alpha for each portfolio is reported in percentage per

year. Panel A of Table I shows results with sample periods that match the original study for each

measure, and Panel B extends each of these samples through December 2015. Panel A produces

evidence that R2, active weight, fund return volatility, industry concentration index, and return

gap are significant predictors of fund performance, whereas the unconditional alpha estimate for the

active share strategy is positive but statistically insignificant at conventional levels. The magnitude

and statistical significance of these results are in line with the findings in the original studies.16

15See http://research.stlouisfed.org/fred2/.
16Given that we use consistent sample formation screens and portfolio formation methods across the measures, our

results may not perfectly replicate those in prior studies. The alpha estimates reported in Panel A of Table I are,
nonetheless, close in economic magnitude to the corresponding figures from prior literature. Our tests also match the
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Panel B of Table I presents estimates of unconditional alphas and factor loadings over the

longer sample periods that are the focus of our main analysis. The results suggest that extending

the sample periods of the original studies does little to degrade strategy performance or change our

statistical assessment of the unconditional alpha estimates (with the exception of the active share

strategy). For example, the hypothetical long-short portfolios based on volatility and return gap

earn abnormal returns of 6.17% and 1.76% per year, respectively. Both estimates are statistically

significant at the 1% level using a two-tailed test. Further, the unconditional alpha estimates of the

R2, active weight, and industry concentration strategies are statistically significant at the 5% level,

and the active share portfolio has significant positive performance at the 10% level. The economic

magnitudes of these six abnormal return spreads are large, ranging from 1.37% to 6.17% per year

across the measures.

To provide a deeper understanding of the strategies of interest, Table II presents portfolio

characteristics. Panel A shows average net return, average gross return, and standard deviation

of net return for the extreme strategy portfolios. Consistent with the results for unconditional

alphas from Panel B of Table I, the activeness measures produce substantial spreads in average

fund returns. For example, the low-minus-high R2 portfolio provides an average net return of

2.54% per year and an average gross return of 2.90%. Panel B reports average characteristics of

the mutual funds held in each portfolio. Average expense ratios tend to be somewhat larger for

categories that indicate higher managerial activeness, but the magnitudes of these differences are

small in comparison to the average return differences. Fund-level turnover is also generally higher

for strategy portfolios with more active managers according to the measures.

More importantly, Panel C of Table II shows that investments based on the activeness mea-

sures require considerable strategy-level turnover. For example, an investor pursuing Amihud and

Goyenko’s (2013) proposed strategy of investing in low-R2 mutual funds would see turnover of

135% per year. The high-R2 portfolio exhibits even higher annualized turnover at 147%. These

results highlight the dynamic nature of these strategies and have potentially critical implications

for the evaluation of their performance. In particular, the high turnover among the extreme R2

groups suggests that the identity and characteristics of the constituent funds are likely to change

quite significantly over time. As such, the unconditional risk exposures presented in Table I used

to benchmark strategy performance may mask considerable time variation in style exposures for

the R2 portfolios.

original studies in terms of statistical inference. Notably, our results using active share decile portfolios are consistent
with Cremers and Petajisto’s (2009) unconditional Carhart (1997) alpha for a high-minus-low active share quintile
strategy that is positive, but statistically insignificant (see, e.g., Table 8 of their paper).
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We see direct evidence of this effect in Figure 1 and Panel D of Table II. Figure 1 plots the

three-month lagged loading estimates for each of the four factors in the Carhart (1997) model for

the low-R2 portfolio. Several of the portfolio factor loadings show pronounced shifts and trends

across time, which provides direct motivation for using a conditional version of the Carhart (1997)

model for performance evaluation. For example, the lagged three-month, holdings-based loading on

the value factor ranges from −0.54, indicating a strong growth tilt, to 0.64, suggesting a pronounced

exposure to value stocks. The loadings for the market, size, and momentum factors also show shifts

that are economically large in magnitude. Note that these large swings in loadings are unlikely to

be attributable to estimation error. Factor loadings for mutual funds tend to be estimated quite

precisely compared to, say, individual stocks, and the estimates presented in Figure 1 are also

averages across mutual funds in a given portfolio.17

Panels C and D of Table II show that these issues are relevant for the portfolios formed on

alternative predictors of performance. Although several of the strategies require less trading in

comparison to the R2 portfolios, the annualized turnovers for the extreme decile portfolios are

still substantial and exceed 75% with the exception of the active share strategy. The standard

deviations of lagged portfolio factor loadings shown in Panel D are generally similar across the

measures. There is some evidence of asymmetry in the reported volatilities, as the active decile for

each proxy tends to exhibit greater variance in its style exposures. We demonstrate below that the

alphas for these more active deciles are also more affected by the conditional tests.

To gain additional perspective on the predictive ability of the variables, we plot the time series

of returns for the corresponding long-short strategy portfolios in Figure 2. The performance of

several of the strategies is highly concentrated in the years 1999 and 2000, a period well known

for the pronounced run-up and subsequent crash in the prices of technology stocks. In particular,

the three highest monthly returns for the active weight, industry concentration index, and return

gap measures are realized in a four-month span from November 1999 to February 2000, and these

months also account for some of the highest returns for the R2 and active share strategies. We also

see instances of extreme negative performance around this period, with the low-minus-high volatility

portfolio earning returns of −26.3% in February 2000 and −17.6% in June 2000. Importantly, the

period over which the mutual fund strategies realize this extreme performance is marked by volatile

17For the low-R2 strategy shown in Figure 1, we compute the average fund-level standard errors each month for
the lagged three-month, returns-based loadings on the market, size, value, and momentum factors over the period
January 1999-December 2015. The time-series averages of these values are 0.10, 0.14, 0.20, and 0.13, respectively.
The average standard errors for the instruments shown in Figure 1, accounting for error correlation across funds, are
0.02, 0.04, 0.05, and 0.03. Across the six sets of portfolios considered in the paper, we find that the standard errors
of the lagged loadings are typically higher for the more active deciles.
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factor returns, such that properly measuring conditional factor exposures is critical for assessing

managerial skill.

4.2 Conditional performance evaluation

Table III reports results from measuring strategy performance using the conditional perfor-

mance evaluation approach. Each panel shows parameter estimates corresponding to one of the six

individual predictor variables. The unconditional model in each case represents the specification

in which factor loadings are constant. These regressions correspond to the unconditional Carhart

(1997) model results in Panel B of Table I. The conditional models in each panel use the three-

month lagged factor loading instruments to capture time variation in factor exposures. We report

alphas and adjusted R2s for the extreme portfolios and present parameter estimates for the factor

exposures in the conditional models. We also show the unconditional and conditional alphas for the

long-short strategy portfolio. Finally, for each of the long (i.e., the decile expected to outperform

based on prior literature) and long-short portfolios, we report a p-value from a one-tailed test of

the null hypothesis that the conditional alpha is equal to the corresponding unconditional alpha

against the alternative that the conditional alpha is less than the unconditional alpha.

We begin with a detailed analysis of the R2 strategy results in Panel A of Table III. The

annualized unconditional Carhart (1997) model alpha of this strategy over the 1990-2015 period is

1.91% with a standard error of 0.84%. The conditional model introduces the three-month lagged

factor loading instruments for the low-R2 and high-R2 portfolio loadings. Each of the eight lagged

beta instruments is a significant predictor of the corresponding portfolio factor exposure. The

regression R2 for the low-R2 (high-R2) portfolio increases from 93.7% (98.7%) in the unconditional

model to 96.5% (99.3%) in the conditional case. Modeling time variation in factor exposures thus

explains a substantial portion of the remaining variation in portfolio returns. The annualized

conditional alpha for the low-minus-high portfolio is 0.34%, which is insignificant at conventional

levels. This lack of statistical significance in the conditional model is noteworthy because it comes

in spite of the fact that test power is much higher in this specification. In particular, the portfolio

alpha estimates are more precise in the conditional case because of the substantially improved model

fit, such that the standard error of the conditional alpha is about two-thirds of the corresponding

figure for the unconditional alpha. Finally, the reductions in alphas for the low-R2 and low-minus-

high R2 portfolios are both large in economic magnitude and strongly significant, with p-values of

0.3% and 0.4%, respectively. Overall, the conditional models produce strong evidence that portfolio
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factor loadings are time varying, and modeling this time variation affects inferences about the R2

strategies.

The remainder of Table III reports results for strategies formed on active share (Panel B),

active weight (Panel C), volatility (Panel D), industry concentration (Panel E), and return gap

(Panel F). The general conclusions from Panel A tend to carry over to these sets of test portfolios.

The conditional specifications indicate that modeling time variation in portfolio factor loadings

is important. Across the six sets of conditional models in Panels A-F, 40 of the 48 three-month

lagged factor loading instruments are significant predictors at the 5% level. Allowing for time-

varying factor loadings also produces an improvement in model fit for all of the strategy portfolios.

Moreover, introducing conditioning information is important for making inferences about fund

performance for all six decile strategies in Panels A-F of Table III. The unconditional alpha of

the active share strategy is significantly positive at the 10% level, the R2, active weight, and

industry concentration unconditional alphas are statistically significant at the 5% level, and the

corresponding figures for the volatility and return gap portfolios are significant at the 1% level. In

contrast, the conditional alphas for four of these six strategies—R2, active share, volatility, and

industry concentration—are statistically insignificant. The reductions in alpha for the six strategies

are statistically significant at the 10% level with one exception—return gap (p-value of 12.9%). The

return gap strategy in Panel F is the only one with a significant conditional performance measure

at the 5% level, earning a conditional alpha of 1.42% (standard error of 0.39%) compared to the

unconditional alpha estimate of 1.76% (standard error of 0.50%).

In addition to the evidence that conditional alphas are statistically weaker than their uncondi-

tional counterparts, the results in Table III have important economic implications. In particular,

the conditional long-short alpha is less than the corresponding unconditional alpha in all cases,

and the average percentage reduction in magnitude is 61%. These reductions in alpha are large in

economic terms. For example, the 1.47% per year difference in unconditional performance for high-

and low-AS mutual funds (Panel B) drops to just 0.07% after accounting for time-series variation in

portfolio style, and the difference in unconditional and conditional alphas for the volatility strategy

is a substantial 4.56% per year. We also find that evaluating performance with a conditional model

is particularly important for the long leg of each strategy portfolio, as the conditional alpha is sig-

nificantly less than the unconditional alpha at the 5% level for each of these portfolios. Moreover,

each long leg portfolio has a negative conditional alpha estimate, indicating that the strategy-level

abnormal returns are primarily attributable to significant negative performance in the short leg

portfolios. Given that investors are unable to take short positions in mutual funds, this finding
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limits the practical appeal of activeness-related strategies.

Before proceeding, we note that the regression R2s in Table III demonstrate that using lagged

factor loading estimates as instruments for factor exposures substantially improves tracking per-

formance.18 A byproduct of this improvement is an increase in the precision of alpha estimates as

unexplained return variance declines. In our tests, for example, the standard error of the active

share strategy’s conditional alpha in Panel B is 0.51% compared to 0.85% for the unconditional

alpha. An increase in the precision of an alpha estimate leads to higher power to reject the null

hypothesis of no performance.

Taken together, the results in Table III suggest that using conditional benchmarks is important

for evaluating strategies that predict mutual fund performance and can have an economically mean-

ingful impact on inferences. In particular, the conditional Carhart (1997) model results for the R2,

active share, volatility, and industry concentration strategies suggest that the primary driver of

performance is not skill in security selection by mutual fund managers. Only the active weight and

return gap measures remain significant predictors of abnormal fund performance relative to their

conditional benchmarks. In Section 4.5, we revisit these results to further examine the potential

sources of the unconditional alphas earned by the mutual fund strategies.

4.3 Lagged factor loading instrument design

Our conditional benchmarking approach relies on instruments based on lagged factor loadings to

capture predictable, short-term movements in strategy factor exposures. As introduced in Section

3.2, we can estimate lagged factor loadings using either fund returns or the returns of fund holdings.

Our base specifications use returns-based instruments when they are available for the entire sample

period (i.e., for the portfolios sorted on lagged volatility) and holdings-based instruments otherwise.

We also use three months of lagged data to calculate instruments in the base case. In this section,

we examine the impact of these design choices on model fit and inferences about mutual fund

performance. This analysis serves two purposes. First, we establish that our main empirical

findings are robust to reasonable alternative specifications. Second, we provide recommendations

for constructing instruments based on the fit of alternative conditional models.

18We test whether the improvements in tracking performance are statistically significant by comparing the un-
conditional and conditional regression adjusted R2s in a bootstrap analysis. For each strategy, we form 25,000
bootstrap samples by drawing T monthly observations of strategy returns, factor returns, and strategy instruments
with replacement, where T is the number of monthly observations in the strategy’s sample period. We then estimate
unconditional and conditional versions of the Carhart (1997) four-factor model using equations (4) and (5) for each
bootstrap sample, calculate the adjusted R2 for each model, and find the bootstrap p-value as the proportion of draws
in which the unconditional R2 is greater than the conditional R2. The increase in R2 from introducing conditioning
information for each model in Table III is statistically significant at the 1% level.
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We begin our analysis by studying tracking performance with alternative factor loading in-

struments. Figure 3 shows adjusted R2s for the long leg portfolio of each strategy across several

specifications. Given that the sample period with returns-based instruments is limited by data

availability, Figure 3 plots R2s for the January 1999-December 2015 period with the exception

of a January 2000-December 2015 sample for the volatility strategy. Each panel shows R2 val-

ues from an unconditional Carhart (1997) model and several conditional model specifications with

returns-based or holdings-based instruments. The lagged factor loadings in the conditional models

are estimated from daily data over the past one to 12 months or monthly data over the past 24

months.

Three basic patterns emerge from examining Figure 3. First, all of the conditional models

exhibit improvements in adjusted R2 relative to the corresponding unconditional model. Second,

the conditional R2s reflect a tradeoff for the instrument lag length. On the one hand, using more

recent returns data allows the lagged loadings to better reflect the conditional exposures of stocks

that are currently held in the mutual fund portfolios. On the other hand, estimating a Carhart

(1997) regression model using a relatively longer time series of returns will reduce estimation error

in the factor loadings. The three-month lagged factor loading instruments that we use in Section 4.2

provide a balance between these considerations and produce conditional benchmarks that generally

perform well relative to the alternatives. Third, the R2s for the returns-based and holdings-based

instruments are similar for each specification, but there is some tendency for the models with

returns-based lagged factor loadings to track strategy returns better compared to holdings-based

specifications.

Table IV reports alpha estimates for alternative specifications of the conditional Carhart (1997)

models for the six strategies of interest. The table presents long-short alpha estimates, the associ-

ated standard errors, and p-values from tests of whether the conditional alphas are less than their

unconditional counterparts. For ease of comparison, Panel A shows unconditional alphas that cor-

respond to the results in Panel B of Table I. Conditional model alpha estimates from specifications

with lagged factor loading instruments from one-month, three-month, six-month, 12-month, and

24-month periods are displayed in Panel B. Panel C shows alphas from conditional models that

combine three-month instruments with longer-term instruments from lagged 12-month or 24-month

periods.

The results in Table IV show that our main findings from Section 4.2 are robust to alternative

instruments. Beginning with the single-instrument specifications in Panel B, the five conditional

models for the R2 strategy produce alpha estimates between 0.34% and 0.79%. The conditional
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alphas are significantly lower than the unconditional alpha of 1.91% in all cases. The remaining

strategies generally produce similar results to the base specification, with economically large reduc-

tions in estimated alphas after incorporating information from lagged factor loading instruments.

Return gap is again an exception as it is a significant predictor of performance relative to any of

the conditional models. In some cases, such as for the industry concentration strategy, the rel-

atively poor fit of the conditional models with longer-term (i.e., 12-month or 24-month) lagged

factor loading instruments observable in Figure 3 is accompanied by conditional alphas that are

similar in magnitude to the unconditional alphas. This finding indicates that accurately modeling

relatively short-term movements in strategy factor loadings is important for inferences. Finally, the

two-instrument models in Panel C generally show little improvement in model fit (not shown) after

adding either the 12-month or 24-month lagged factor loading instruments, and the conditional

alpha estimates are similar in magnitude to those in the base specifications.

Overall, the results in this section show that our conclusions are not driven by a specific choice

of lagged loading instruments. There are, however, systematic patterns in the tracking performance

of conditional models with alternative instruments that should influence the design of conditional

performance tests. Based on our analysis of the six strategies under consideration, our recom-

mendations are to form returns-based instruments if this choice does not limit the sample period

and to use relatively short (e.g., three-month) estimation periods to calculate lagged factor loading

instruments.

4.4 Comparison to traditional instruments

We now compare the performance of our conditional benchmarking approach based on lagged

factor loadings to the traditional methods in the literature that rely on macroeconomic predictors.

We argue in Section 3 that the lagged loading instruments have desirable features for modeling

portfolio exposures. In Table V, we investigate whether or not these instruments outperform the

dividend yield, default spread, and term spread in tracking strategy returns. Panels A-F show

results for the six strategies under consideration. For reference, each panel reproduces the results

from Table III for the unconditional Carhart (1997) model and the conditional Carhart (1997)

model with three-month lagged loadings as instruments.

In Panel A of Table V, Case C1 corresponds to a model that allows only the market factor loading

to vary with conditioning information. That is, the market loading is specified as a linear function

of the dividend yield, default spread, and term spread traditional state variables. This approach to

22



instrumenting only for the market factor in a Carhart (1997) regression is common in the literature

(e.g., Kacperczyk, Sialm, and Zheng (2005), Kosowski, Timmermann, Wermers, and White (2006),

Huang, Sialm, and Zhang (2011), and Doshi, Elkamhi, and Simutin (2015)) and is motivated by the

extensive evidence on the predictability of market returns using these variables. Using the three

traditional instruments for market beta, the conditional alpha for the low-minus-high R2 strategy

only declines to 1.76% from the unconditional estimate of 1.91%. The regression R2s for the low-R2

portfolio and high-R2 portfolio each exhibit a modest increase of between 0.0% and 0.3%. We next

consider a conditional model (Case C2) that allows each of the four factor loadings to vary with the

traditional instruments. This approach is adopted, for example, in Kacperczyk, Sialm, and Zheng

(2008) and allows for considerably more flexibility than instrumenting for market beta alone. The

conditional alpha for Case C2 of 0.94% is statistically significantly lower than the unconditional

alpha with a p-value of 2.8%, but abnormal performance in Case C2 remains economically large

in comparison to the 0.34% alpha from our conditional approach in Case C3. Finally, Case C4

combines the three-month lagged factor loading instruments with the traditional instruments, such

that each of the four factors has four instruments. Results are similar across Cases C3 and C4,

with conditional alpha estimates of 0.34% and 0.35%, respectively.

Panels B-F of Table V show the results for the remaining five strategies. Our specification in

Case C3 produces better model fit compared to the methods using only traditional variables (Cases

C1 and C2) for each portfolio. Additionally, Case C4 in each panel produces similar inferences

to Case C3 for the abnormal performance of the six strategies, such that the traditional state

variables have relatively little effect on the conditional models after including the lagged factor

loading instruments. Thus, the results in Table V support the use of lagged portfolio factor loadings

as superior instruments for factor exposures.

4.5 Decomposition and evaluation of strategy performance

Our main results in Section 4.2 show that, whereas the spreads in unconditional alphas are

significantly positive for each of the six predictor variables, the corresponding conditional alphas

are all substantially smaller in magnitude and only active weight (10% significance level) and return

gap (1% significance level) remain as significant predictors of abnormal performance. Thus, the

bulk of the unconditional performance of these mutual fund strategies is not likely to be attributable

to skill in security selection by fund managers. In this section, we decompose the unconditional

alphas of the strategy portfolios. As shown by Lewellen and Nagel (2006), Boguth, Carlson, Fisher,
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and Simutin (2011), and others, the difference between the unconditional and conditional alpha of

a portfolio is a function of factor timing and volatility timing. In particular, systematic covariation

between portfolio factor loadings and either the expected returns or volatilities of the factors can

produce unconditional alphas that differ from conditional alphas.

For the Carhart (1997) model, the unconditional alpha estimate for a given portfolio can be

decomposed as

α̂U
i =

Security selection︷︸︸︷
α̂C
i +

Factor timing︷ ︸︸ ︷
cov(β̂Ci,t, RMKT,t) +

Volatility timing︷ ︸︸ ︷
(β̄Ci,t − β̂Ui )R̄MKT,t

+ cov(ŝCi,t, RSMB,t) + (s̄Ci,t − ŝUi )R̄SMB,t

+ cov(ĥCi,t, RHML,t) + (h̄Ci,t − ĥUi )R̄HML,t

+ cov(ûCi,t, RUMD,t) + (ūCi,t − ûUi )R̄UMD,t, (6)

where β̂Ci,t is the fitted conditional loading on the market factor, β̄Ci,t is the average conditional

loading, β̂Ui is the unconditional market loading estimate, and the terms for the remaining three

factors are defined analogously. For each of the four factors, a direct factor timing term and a factor

bias effect term can contribute to differences between the unconditional and conditional portfolio

alpha. The direct factor timing terms measure the covariances between factor loadings and factor

returns. A positive covariance between a portfolio’s exposure to a factor and the factor’s realized

return will have a positive effect on the measured unconditional alpha. The factor bias terms reflect

the differences between the average conditional factor exposures and the unconditional loadings.

These terms are related to volatility timing. For example, if the conditional loading on the market

factor for a portfolio tends to be high when the market factor is highly volatile, then the portfolio’s

unconditional market factor loading will overstate its average conditional exposure to the market

factor.

Our proposed method for estimating conditional alpha combined with this decomposition of

unconditional alpha provides an approach for attribution analysis of a predictor of mutual fund

performance. A given strategy’s conditional alpha may capture the security selection skill of the

managers of mutual funds held in the strategy portfolio.19 The remainder of the unconditional per-

formance of a strategy is attributable to factor timing or volatility timing, which could potentially,

but not necessarily, be indicative of managerial skill as discussed further below.

19As noted by Ferson and Mo (2016) and others, the conditional alpha could also reflect managerial ability to
execute low cost trades or manage an efficient securities lending operation.
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Table VI shows results from empirical decompositions of the unconditional alphas for the strat-

egy long-short portfolios. The conditional models in this table correspond to the base results from

Table III. For each strategy, Panel B reports the total factor timing and total volatility timing effects

as well as the factor timing components associated with each factor. We evaluate the statistical

significance of each component using a bootstrap approach. Specifically, we draw monthly obser-

vations with replacement from the sample observations to create 25,000 bootstrapped samples for

each strategy that match the original sample length. For each monthly draw, a full set of portfolio

returns, instruments, and factor returns is taken from a single month to preserve the structure of

the data. Given a bootstrapped sample, we estimate unconditional and conditional Carhart (1997)

model regressions and calculate the market timing and volatility timing components as described

above. A * (**) [***] in Table VI indicates that the 90% (95%) [99%] bootstrap confidence interval

of the corresponding estimate does not include zero.

The results in Table VI indicate that factor timing is the key driver of the differences between

unconditional and conditional alpha estimates. In particular, the total factor timing effects are

positive for all six strategies. Moreover, the unconditional alpha estimates are influenced by sta-

tistically significant factor timing for the strategies based on R2 (factor timing effects contribute

1.82% of the 1.91% unconditional alpha estimate), active weight (0.75% of 1.40%), volatility (4.47%

of 6.17%), and return gap (0.48% of 1.76%). Significantly positive factor timing effects occur for

the market factor (volatility strategy) and value factor (R2, active weight, and return gap strate-

gies). Factor timing effects also make substantial positive contributions to the unconditional alpha

estimates of the active share (1.08% of 1.47%) and industry concentration (0.50% of 1.37%) strate-

gies, but these effects are statistically insignificant. Volatility timing, on the other hand, tends to

have a smaller economic impact on strategy alphas. Overall, the results in Table VI suggest that

factor timing, rather than security selection, is the primary driver of the positive unconditional

performance estimates for most of the managerial activeness measures that we consider.

Positive factor timing effects at the strategy level may or may not be attributable to mutual

fund manager skill, as timing effects have three potential sources. First, the strategy may tend to

invest in managers with the skill to time factors based on information or trading rules that are not

publicly known. Second, the strategy may identify mutual fund managers who mechanically follow

known timing strategies based on publicly available information. Third, the strategy may shift its

investments across mutual funds with different factor exposures when the portfolios are rebalanced

such that the strategy’s factor exposures change. In our view, only the first of these scenarios lends

itself to an interpretation of the portfolio sorting characteristic as an indicator of managerial skill.
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We proceed to investigate whether the observed factor timing effects arise at the strategy

level or fund level. As previously discussed, the strategy portfolios are rebalanced monthly and

exhibit substantial turnover. The changing composition of the portfolios produces challenges when

determining whether factor timing effects are generated by the funds held within the strategy

portfolios or by strategy turnover across funds, because a relatively long sample period is necessary

to establish the presence of timing ability. To overcome this issue, our approach is to measure

the total factor timing effects over the full sample period for every cohort portfolio generated by a

given strategy. In particular, each strategy has T rebalance dates on which portfolios are formed,

where T is the number of months in the sample period. We form each of these T long-short

portfolios, calculate the portfolio returns for the entire sample period, and estimate the total factor

timing effect from equation (6). This procedure generates T cohort timing effects associated with

each strategy. If a given proxy for managerial activeness successfully identifies funds with positive

timing ability and timing skill is persistent, then the cohort portfolios should systematically exhibit

positive factor timing effects.

Figure 4 shows histograms of the factor timing effects for cohort portfolios in percent per

year. Each panel also plots the total factor timing effect for the strategy portfolio (dashed line)

from Table VI. Across the six strategies, the cohort portfolios generally display little factor timing

compared to the strategy portfolios. The only managerial activeness measures for which any of the

T cohort portfolios generates a larger factor timing effect than the strategy portfolio are industry

concentration (two of 312 cohort portfolios) and return gap (five of 312 cohort portfolios). For the

return gap measure, the distribution of cohort timing is nonetheless centered around zero.

Panel C of Table VI provides summary statistics for the total factor timing effects across the

cohort portfolios. The average cohort timing effects are small compared to the corresponding

strategy figure for each of the strategies with significant timing effects. In particular, the average

cohort timing effects are small compared to strategy timing for the R2 (0.46% average for the

cohorts versus 1.82% for the strategy), active weight (0.13% versus 0.75%), volatility (0.73% versus

4.47%), and return gap (−0.02% versus 0.48%) portfolios. Overall, the results in Figure 4 and Table

VI indicate that, whereas the strategy portfolios tend to generate substantial positive factor timing

effects, the cohort portfolios generated by the strategies almost never produce these large effects.

These findings are consistent with the view that strategy-level turnover across funds accounts for

most of the factor timing effects over the sample period.

Our final analysis provides additional evidence about timing at the strategy versus fund level by

concentrating on strategy holdings and performance around the “technology bubble” period. We
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demonstrate in Section 4.1 that the performance of several of the strategies is concentrated around

this time. Periods characterized by volatile factor returns, exemplified by the 1998-2000 episode,

provide the greatest potential to produce large factor timing effects.

To examine the mutual fund strategies during this period, we follow Brunnermeier and Nagel

(2004) and measure the exposure of the strategy portfolios to technology stocks over the period

January 1998-December 2000. We begin by ranking Nasdaq stocks by their price-to-sales ratio,

where sales data are from the Compustat Fundamentals Annual File and lagged at least six months.

We then calculate the weight in each mutual fund that is held in Nasdaq stocks that rank in the

top quintile of price-to-sales using fund holdings data. Finally, we find the average fund weight in

technology stocks for both the long leg and short leg portfolios of each strategy, and the difference

between these two weights proxies for the net exposure of the strategy to technology stocks.

Figure 5 plots the monthly exposure to technology stocks for each strategy over the January

1998-December 2000 period. A positive (negative) number indicates that the long (short) leg

strategy portfolio has a larger technology exposure. We also show the net exposure for buy-and-

hold versions of the strategy portfolios formed at the beginning of January 1998. The dashed line

indicates the timing of the Nasdaq peak in March 2000.

The times series plots of technology holdings shown in Figure 5 indicate that the strategies

collectively navigated through the technology bubble quite well. The R2 strategy, for example,

maintained a positive net exposure in technology stocks until March 2000 (the month of the peak)

and subsequently had a negative exposure during the crash months. This shift in exposure could

arise either from strategy-level turnover or from changes in fund exposures. The January 1998

cohort portfolio for the R2 strategy exhibits relatively little time variation in technology exposure,

indicating that turnover of funds at the strategy level is largely responsible for the changes in

technology weights.

Results for the active share, active weight, industry concentration, and return gap strategies in

Figure 5 each show noticeable declines in technology exposures within three months of the peak. In

contrast, the January 1998 cohort portfolio for each strategy does not follow a similar pattern. The

volatility strategy maintains a very sizeable negative exposure to technology stocks over the January

2000-December 2000 period, but the strategy portfolio avoids any effects of being short technology

stocks in the pre-2000 period due to data availability. The results in Figure 5 are consistent with

positive factor timing effects that arise from strategy-level turnover rather than fund-level timing

ability.

In sum, decompositions of the unconditional performance of the six managerial activeness strate-
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gies produce relatively limited support of predictable abnormal performance in mutual fund returns.

Four of the strategies have insignificant conditional alphas, such that there is little evidence of man-

agerial skill in security selection associated with these measures. Only active weight and return

gap predict differential security selection ability, but these effects are driven by the statistically

significant negative conditional net-of-fee alphas of the short legs of the strategy portfolios. Signifi-

cant factor timing effects strongly contribute to the positive unconditional alphas of the R2, active

weight, volatility, and return gap strategies. The positive factor timing effects, however, appear to

be attributable to strategy-level rebalancing across funds rather than managerial timing ability.

5 Conclusion

In this paper, we show that the conventional approach to evaluating portfolios of mutual funds

based on unconditional factor-model regressions is problematic. Specifically, these portfolios often

exhibit pronounced jumps in style exposures and predictable trends in factor loadings over time.

Evidence of managerial skill in such instances has the potential to be contaminated by a poorly

specified benchmark model that fails to account for changes in the portfolios’ style exposures.

We introduce a method for evaluating conditional portfolio performance that builds on recent

innovations from the asset pricing literature. This approach successfully incorporates information

from lagged mutual fund factor exposures in assessing managerial skill in security selection, factor

timing, and volatility timing.

Among a broad set of six strategies based on managerial activeness, we find that model fit sub-

stantially improves after allowing for time variation in factor loadings. Further, the economic and

statistical evidence of abnormal performance is considerably reduced after incorporating condition-

ing information. In particular, whereas all six of the strategies earn significant unconditional alphas,

the conditional strategy alphas are reduced in magnitude by an average of 61% relative to the un-

conditional alphas, and only two measures (active weight and return gap) produce statistically

significant alphas relative to conditional benchmarks. The unconditional abnormal performance

for several of the strategies is attributable to positive outcomes of the strategies’ implicit style

bets over relatively short periods within the sample. Further, much of the realized strategy-level

performance related to security selection and factor timing is driven by poor performance of low-

activeness funds (i.e., the short leg of each strategy). The evidence collectively suggests that proxies

for fund activeness are not reliable indicators of managerial skill.

Our proposed modeling approach should be a useful tool for evaluating similar evidence in
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past and future research on managed portfolios. For example, the unconditional performance

of strategies based on manager characteristics and trading styles (e.g., Cohen, Coval, and Pástor

(2005), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014), and Wei, Wermers, and Yao (2015))

or contractual incentive structures (e.g., Massa and Patgiri (2009) and Huang, Sialm, and Zhang

(2011)) could be decomposed using our conditional framework. Further, our method outperforms

alternative approaches used in the literature, and the improvements in return tracking translate to

increased statistical power to identify skilled managers.
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Table I: Unconditional four-factor regressions.
The table reports unconditional Carhart (1997) four-factor regression results for decile portfolios sorted
on lagged R2, active share (AS), active weight (AW ), volatility (V ol), industry concentration (ICI), and
return gap (RetGap). Panel A presents results corresponding to the sample period from the original study
on each predictor variable, and Panel B extends the sample periods in Panel A through December 2015. The
portfolios are equal weighted and rebalanced monthly. The unconditional alpha estimates (αU

i ) are reported
in percentage per year, and the numbers in parentheses are White (1980) standard errors. For the alpha
estimates, ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively, using a two-tailed
test.

Low−High High−Low High−Low Low−High High−Low High−Low
R2 AS AW V ol ICI RetGap

Panel A: Original sample period

Sample start date 1990:01 1990:01 1980:04 2000:01 1984:01 1984:01
Sample end date 2010:12 2003:12 2013:12 2013:12 1999:12 2003:12
Alpha, αU

i (%) 2.56∗∗∗ 1.10 1.38∗∗ 6.21∗∗∗ 1.49∗ 1.81∗∗

(0.96) (1.28) (0.62) (2.08) (0.82) (0.73)

Panel B: Extended sample period

Sample start date 1990:01 1990:01 1980:04 2000:01 1984:01 1984:01
Sample end date 2015:12 2015:12 2015:12 2015:12 2015:12 2015:12
Alpha, αU

i (%) 1.91∗∗ 1.47∗ 1.40∗∗ 6.17∗∗∗ 1.37∗∗ 1.76∗∗∗

(0.84) (0.85) (0.60) (1.93) (0.63) (0.50)
Factor loadings
RMKT loading −0.07 0.00 −0.01 −0.53 0.08 0.04
RSMB loading 0.26 0.61 0.05 −0.65 0.36 0.14
RHML loading 0.13 0.24 −0.01 0.54 −0.21 −0.03
RUMD loading 0.05 −0.05 −0.01 0.01 −0.01 0.11
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Table V: Comparison of lagged factor loadings and traditional instruments in condi-
tional benchmark models.
The table reports conditional Carhart (1997) four-factor model regression results for decile portfolios sorted
on lagged R2 (Panel A), active share (Panel B), active weight (Panel C), volatility (Panel D), industry
concentration (Panel E), and return gap (Panel F). The return regression is given by Ri,t = αC

i + (λi,0 +
λ′i,1Z

MKT
i,t−1 )RMKT,t+(γi,0 +γ′i,1Z

SMB
i,t−1 )RSMB,t+(ηi,0 +η′i,1Z

HML
i,t−1 )RHML,t+(νi,0 +ν′i,1Z

UMD
i,t−1 )RUMD,t +εi,t.

The conditioning variables, Zk
i,t−1, for a given portfolio include traditional instruments (i.e., dividend yield,

default spread, and term spread) and three-month lagged factor loadings (“L3”). In each panel, we present
results for unconditional models with no instruments for the factor loadings (Case “U”), conditional models
with traditional instruments for the market factor (Case “C1”), conditional models with traditional instru-
ments for each factor (Case “C2”), conditional models with lagged beta instruments for each factor (Case
“C3”), and conditional models with lagged beta instruments and traditional instruments for each factor
(Case “C4”). For each set of portfolios, “L” represents the long leg based on the given sorting variable,
“S” represents the short leg, and “∆” represents the hypothetical difference portfolio. The estimates of
αC
L , αC

S , and αC
∆ are reported in percentage per year, and σ(αC

∆) is the White (1980) standard error for
the corresponding difference in conditional alphas. R2

L and R2
S are the adjusted R2 values for the long and

short portfolios, respectively. For each conditional model, the table reports a p-value (p(αC
∆ = αU

∆)) for the
one-sided test of the null hypothesis that the difference in conditional alphas is equal to the corresponding
difference in unconditional alphas against the alternative that the difference in conditional alphas is less than
the difference in unconditional alphas. For the alpha estimates, ∗∗∗, ∗∗, and ∗ denote significance at the 1%,
5%, and 10% level, respectively, using a two-tailed test.

Parameter estimates Model fit

Case Instruments Loading(s) αC
L αC

S αC
∆ σ(αC

∆) p(αC
∆ = αU

∆) R2
L R2

S

Panel A: R2 portfolios

U None 0.49 −1.42∗∗∗ 1.91∗∗ 0.84 — 93.7 98.7
C1 Traditional Market 0.35 −1.41∗∗∗ 1.76∗∗ 0.79 0.248 94.0 98.7
C2 Traditional All −0.57 −1.51∗∗∗ 0.94 0.75 0.028 95.4 98.8
C3 L3 All −1.03∗ −1.37∗∗∗ 0.34 0.55 0.004 96.5 99.3
C4 L3 & Traditional All −1.02∗ −1.37∗∗∗ 0.35 0.52 0.007 96.8 99.4

Panel B: Active share portfolios

U None 0.29 −1.18∗∗∗ 1.47∗ 0.85 — 94.9 99.3
C1 Traditional Market −0.23 −1.06∗∗∗ 0.83 0.74 0.072 95.5 99.4
C2 Traditional All −1.11∗∗ −1.13∗∗∗ 0.01 0.59 0.014 97.4 99.4
C3 L3 All −1.25∗∗ −1.32∗∗∗ 0.07 0.51 0.012 97.7 99.4
C4 L3 & Traditional All −1.38∗∗∗ −1.19∗∗∗ −0.19 0.52 0.009 97.9 99.5

Panel C: Active weight portfolios

U None −0.17 −1.57∗∗∗ 1.40∗∗ 0.60 — 96.7 96.4
C1 Traditional Market −0.26 −1.65∗∗∗ 1.39∗∗ 0.63 0.443 96.7 96.4
C2 Traditional All −0.34 −1.68∗∗∗ 1.34∗∗ 0.67 0.414 97.3 97.6
C3 L3 All −0.78∗ −1.45∗∗∗ 0.67∗ 0.38 0.054 98.0 98.3
C4 L3 & Traditional All −0.61 −1.47∗∗∗ 0.86∗∗ 0.39 0.110 98.1 98.4

Panel D: Volatility portfolios

U None 2.03∗∗ −4.15∗∗∗ 6.17∗∗∗ 1.93 — 93.5 94.0
C1 Traditional Market 1.35∗ −2.20 3.55∗ 1.81 0.003 94.0 94.8
C2 Traditional All −0.15 −1.73 1.58 1.39 0.001 97.1 96.5
C3 L3 All −0.08 −1.69∗ 1.61 1.11 0.003 97.8 97.7
C4 L3 & Traditional All −0.33 −1.84∗∗ 1.51 1.02 0.004 98.0 98.0

(continued)
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Table V—Continued

Parameter estimates Model fit

Case Instruments Loading(s) αC
L αC

S αC
∆ σ(αC

∆) p(αC
∆ = αU

∆) R2
L R2

S

Panel E: Industry concentration portfolios

U None 0.13 −1.24∗∗∗ 1.37∗∗ 0.63 — 96.2 99.3
C1 Traditional Market 0.19 −1.22∗∗∗ 1.41∗∗ 0.62 0.700 96.2 99.3
C2 Traditional All −0.13 −1.35∗∗∗ 1.22∗∗ 0.61 0.286 96.6 99.4
C3 L3 All −0.50 −1.26∗∗∗ 0.76 0.52 0.042 97.2 99.4
C4 L3 & Traditional All −0.50 −1.32∗∗∗ 0.82 0.53 0.080 97.3 99.4

Panel F: Return gap portfolios

U None −0.10 −1.86∗∗∗ 1.76∗∗∗ 0.50 — 96.4 97.1
C1 Traditional Market 0.14 −1.75∗∗∗ 1.90∗∗∗ 0.51 0.860 96.5 97.1
C2 Traditional All −0.28 −1.89∗∗∗ 1.61∗∗∗ 0.51 0.293 97.0 97.4
C3 L3 All −0.71 −2.13∗∗∗ 1.42∗∗∗ 0.39 0.129 97.4 97.8
C4 L3 & Traditional All −0.64 −2.12∗∗∗ 1.48∗∗∗ 0.39 0.205 97.7 98.0
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Table VI: Unconditional alpha decompositions.
The table provides decompositions of unconditional Carhart (1997) four-factor alpha estimates into security
selection effects, direct factor timing effects, and volatility timing effects for decile portfolios sorted on
lagged R2, active share (AS), active weight (AW ), volatility (V ol), industry concentration (ICI), and
return gap (RetGap). For each set of portfolios, the conditional alphas and factor loadings are from the
corresponding conditional models in Table III. We present the unconditional alpha (αU

∆) for each hypothetical
long-short strategy in Panel A. In Panel B, each unconditional alpha is decomposed into a security selection
component (αC

∆), four factor timing components, and a total volatility timing component. For the market

factor (RMKT,t), the factor timing component is estimated as cov(β̂C
∆,t, RMKT,t), where β̂C

∆,t is the portfolio’s

fitted conditional market loading (e.g., for the R2 strategy, β̂C
∆,t = λ̂L,0 + λ̂′L,1Z

MKT
L,t−1 − λ̂H,0 − λ̂′H,1Z

MKT
H,t−1).

The volatility timing effect for the market factor is (β̄C
∆,t− β̂U

∆)R̄MKT,t, where β̄C
∆,t is the average conditional

loading for the market factor, β̂U
∆ is the estimated unconditional market factor loading, and R̄MKT,t is

the average return on the market factor. The factor timing and volatility timing effects for the size factor
(RSMB,t), value factor (RHML,t), and momentum factor (RUMD,t) are estimated analogously. We evaluate
the statistical significance of the timing effects in Panel B using a bootstrap approach, and ∗∗∗, ∗∗, and
∗ indicate that the 99%, 95%, and 90% bootstrap confidence interval, respectively, of the corresponding
estimate does not include zero. Panel C reports the mean and the 1st, 50th, and 99th percentiles of total
factor timing across long-short cohort portfolios formed on each predictor variable. All figures are reported
in percentage per year.

Low−High High−Low High−Low Low−High High−Low High−Low
R2 AS AW V ol ICI RetGap

Panel A: Unconditional alpha

Unconditional alpha, αU
∆ 1.91∗∗ 1.47∗ 1.40∗∗ 6.17∗∗∗ 1.37∗∗ 1.76∗∗∗

Panel B: Decomposition

Conditional alpha, αC
∆ 0.34 0.07 0.67∗ 1.61 0.76 1.42∗∗∗

Factor timing:

cov(βC
∆,t, RMKT,t) 0.12 0.05 −0.02 2.06∗∗∗ −0.07 −0.09

cov(sC∆,t, RSMB,t) 0.18 −0.21 0.17 0.64 −0.06 −0.03

cov(hC∆,t, RHML,t) 1.02∗∗ 0.80 0.31∗∗ 2.06 0.21 0.37∗∗∗

cov(uC∆,t, RUMD,t) 0.49 0.43 0.30 −0.29 0.42 0.24

Total factor timing 1.82∗∗∗ 1.08 0.75∗ 4.47∗ 0.50 0.48∗

Total volatility timing −0.24 0.32 −0.02 0.10 0.10 −0.15

Panel C: Cohort factor timing

Mean 0.46 0.55 0.13 0.73 0.28 −0.02
P01 0.13 0.13 −0.31 −1.48 −0.03 −0.47
P50 0.45 0.60 0.12 0.64 0.30 −0.03
P99 0.76 0.77 0.60 3.07 0.50 0.51
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Figure 1: Lagged factor loadings for low-R2 mutual funds.
The figure shows lagged three-month factor loadings from Carhart (1997) model regressions for the low-R2

decile portfolio. The solid (dashed) line corresponds to lagged loadings estimated from fund holdings and
stock-level excess returns (mutual fund excess returns). In each case, the lagged loadings are the equal-weight
lagged loadings across constituent mutual funds. The sample period is January 1990-December 2015.
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Figure 2: Differences in returns for characteristic-sorted portfolios of mutual funds.
The figure shows differences in net returns in percentage per month for the extreme decile portfolios sorted
on lagged R2, active share, active weight, volatility, industry concentration, and return gap.
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Figure 3: Comparison of model fit.
The figure shows adjusted R2 values from conditional Carhart (1997) four-factor model regressions for decile
portfolios with low R2, high active share, high active weight, low volatility, high industry concentration,
and high return gap. The instruments for a given portfolio are the one-month (D1), three-month (D3),
six-month (D6), 12-month (D12), and 24-month (M24) lagged loadings for the corresponding factors. The
24-month instruments are estimated from monthly four-factor regressions, and all other instruments are
based on daily four-factor regressions. For each plot, the bar marked “U” corresponds to an unconditional
model with no instruments for the factor loadings. For the other cases, the bar on the left (right) corresponds
to a conditional model with lagged loading instruments estimated from fund holdings and stock-level excess
returns (mutual fund excess returns). The sample period for the volatility strategy is January 2000-December
2015, and the sample period for the remaining strategies is January 1999-December 2015.
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Figure 4: Factor timing for cohort portfolios.
The figure shows histograms of total factor timing for long-short cohort decile portfolios sorted on lagged
R2, active share, active weight, volatility, industry concentration, and return gap. Cohort portfolios are
investments in funds with extreme values of a given predictor in the specified month. For example, the
January-1990 cohort for the R2 strategy is a full-sample trading strategy that takes a long (short) position
in the decile of mutual funds with the lowest (highest) R2 values at the beginning of January 1990. The
dashed line in each plot shows total factor timing for the overall long-short strategy, which is rebalanced at
the beginning of each month. The units on the horizontal axis are in percentage per year.
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Figure 5: Differences in holdings of technology stocks.
The bars in each plot show the differences in the average weight in technology stocks for long and short decile
portfolios formed on the indicated predictor variable. The solid line corresponds to this difference for the
January-1998 cohort. Following Brunnermeier and Nagel (2004), technology stocks are defined as Nasdaq
firms with price-to-sales ratios in the top quintile.

45


