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Kleibergen and Zhan (2020) worry that recently proposed alternative consumption mea-

sures (Parker and Julliard, 2005; Jagannathan and Wang, 2007; Savov, 2011, and Kroencke,

2017) are only poorly correlated with stock returns. They claim that the popular textbook

methods (Campbell, Lo, and MacKinlay, 1997; Cochrane, 2005; Campbell, 2017; Ferson, 2019)

cannot be trusted when risk factors are “useless” (i.e., uncorrelated with stock returns) and

when the sample size is small (as is often the case in consumption-based pricing). In considering

these claims, they propose a new testing methodology that is robust to “useless” factors. They

illustrate their method on a short sample of the dataset studied in Kroencke (2017). Using this

new methodology, they can neither confirm nor reject the idea that the consumption factor

helps explain stock returns (Kleibergen and Zhan, 2020, p.547).

For the empirical application they consider, I show that their methodology lacks the power

to provide inference on the factor correlation, the coefficient of relative risk aversion, or the

price of risk. At the same time, traditional inference using GMM-based tests of the non-linear

model, or Fama-MacBeth/Shanken t-statistics for the linearized model, perform considerably

better than is stated in Kleibergen and Zhan (2020). The textbook methods are often (but not

always) trustworthy and are always more powerful in detecting “useful” factors. Furthermore,

simple bootstrap confidence intervals are always trustworthy and remain powerful. This paper

aims to illustrate the properties of the different methods in empirically relevant cases so that

applied researchers can make informed decisions on which method to use in consumption-based

asset pricing.

GMM-based tests of the non-linear model: Kleibergen and Zhan (2020) consider GMM-

based tests (Hansen, 1982) of the non-linear version of the consumption-based model when

the market excess return is the only test asset. If an estimate of the coefficient of relative risk

aversion is significantly different from zero, in an economically plausible range, and the pricing

error is small, such a finding is interpreted as evidence that the consumption factor helps to

explain the equity premium. The core of the problem is that the coefficient of relative risk

aversion cannot be identified when the factor is “useless.” Estimates will come with a non-
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standard distribution, which is also wider than the distribution of a “useful” factor. Because

GMM standard errors assume that a factor is “useful,” one might too often conclude that the

factor helps to explain the equity premium when the factor is actually “useless.”

Kleibergen and Zhan (2020) claim that the correlation of alternative consumption mea-

sures is indeed insufficient to trust GMM standard errors, even though factor correlation is

economically and statistically significant for several of the consumption measures considered.1

My paper shows that their test for sufficient factor correlation (called the GMM-rank test)

is almost impossible to pass, regardless of whether a factor is “useless” or “useful” and highly

correlated with asset returns.

I illustrate the issue in Figure 1, where I report simulation results of the GMM-rank test

executed with the same code and the same settings as in Kleibergen and Zhan (2020). The

y-axis shows the simulation-based probability to reject the null hypothesis that a factor is

“useless.” The x-axis varies the population factor correlation coefficient with the consumption

factor from zero (“useless”) up to 1.00 (the“most useful” factor one can hope for).2 The blue line

shows that the GMM-rank test is unable to detect sufficient factor correlation for any amount

of factor correlation, even when factor correlation is perfect.3 Insufficient factor correlation

cannot be the problem.

Instead, I show that the failure to detect “useful” factors is due to a bad GMM objective

function. It has two corner solutions, where the statistical software used reaches the limit of

numerical precision and rounds the GMM objective functions arbitrary to zero. Because the

test statistic is arbitrary set to zero somewhere, it is impossible to find a test statistic larger

than the critical value and reject the hypothesis that there is a lack of factor correlation. The

situation is known as the “GMM trap” (see Figure 2 for an illustration with the empirical

1For example, the garbage measure (Savov, 2011) comes with a correlation coefficient as large as 0.58,
with a bootstrapped 95% confidence interval of <0.3, 0.7>. For unfiltered consumption (Kroencke, 2017) the
correlation coefficient is 0.45 <0.2, 0.6> (see Table 1).

2The model does not even predict a correlation of 1.00. Individual assets are allowed to have (large) id-
iosyncratic risk. It is the optimum one can hope for from a purely statistical perspective.

3Increasing the sample size to a hypothetical 200 years does not change this conclusion (Appendix, Figure
A.1).
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data).4

The “GMM trap” also plagues the novel method for robust estimation of the coefficient of

relative risk aversion in consumption-based asset pricing models. Kleibergen and Zhan (2020)

propose replacing standard GMM-based inference with the GMM-Anderson-Rubin (GMM-

AR) test to obtain a “useless” factor robust test. The GMM-AR test searches for all possible

values of the coefficient of relative risk aversion where a test of a zero moment condition (the

“J-test”) cannot be rejected. This region is then used to determine confidence intervals for the

coefficient of relative risk aversion.

When the factor is “useful,” and the sample is large enough, there should be a single

parameter region where the J-test cannot be rejected, which results in a bounded confidence

interval. Unbounded (or disjointed) confidence intervals mean that the J-test cannot be rejected

in a single region, which is interpreted as evidence of insufficient factor correlation. Again,

because the objective function is arbitrarily set to zero at multiple regions, the GMM-AR

confidence intervals are likely to appear unbounded. But these unbounded confidence sets do

not necessarily reflect poor factor correlation but rather the ill-conditioned GMM objective

function. While the GMM-AR test is robust to the “useless” factor problem, this approach

lacks the power to detect “useful” factors in empirical applications (see Figure 3). This brings

me to the main critique of this paper. A “useless” factor robust test procedure is not helpful

for applied research if the test does not allow for the detection of a “useful” factor.

I discuss remedies that allow one to conduct inference that is “useless” factor robust and

powerful. (1) I propose to use a modified test for sufficient factor correlation (GMM-rank

test). This version does not weight the moment condition(s) and has no corner solutions. A

simulation experiment shows that the corrected GMM-rank test is more accurate and can

differentiate between “useless” and “useful” factors (see the red line in Figure 1). A direct test

of the correlation coefficient, similar to the one reported in Savov (2011), is even more powerful

in detecting“useful” factors (see the black line in Figure 1). (2) I show that applying the GMM-

4See also Cochrane (2005), Chapter 11.5, for a detailed discussion of this frequent problem in the context
of asset pricing.
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Figure 1. The Power of GMM-rank Tests
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GMM-rank Tests, T=55 and N=1

 useless factor

reported P-J Q4-Q4 unfiltered garbage

GMM-rank test, as in Kleibergen and Zhan (2020)

GMM-rank test, this paper

Simple test of the correlation coefficient

Description: This figure shows the Monte Carlo simulation-based probability of finding a “significant factor
correlation” such that the coefficient of relative risk aversion can be identified and GMM standard errors are
expected to be reliable. Results are based on 10,000 draws of multivariate normally distributed data calibrated
to the market excess return (N=1) and a hypothetical consumption factor with T=55 years of time-series
observations. Results on the far left show the rejection probability of a consumption factor that is in the
population uncorrelated with the market excess return (“useless” factor). These results can be interpreted as
the size of a test. Moving from the left to the right increases the population correlation coefficient from zero to
1.00 (“useful” factors). These results can be interpreted as the power of the tests. The vertical lines indicate the
sample correlation coefficient of alternative consumption measures (see Table 1 for further details). The blue
line corresponds to the GMM-rank test as reported in Kleibergen and Zhan (2020). The red line corresponds
to a modified version of the GMM-rank test and is proposed in this paper. The black line corresponds to a
direct test of the correlation coefficient, as in Savov (2011).

Interpretation: The GMM-rank test as in Kleibergen and Zhan (2020) has no power to detect “useful” factors
(blue line). The reason is that the GMM objective function of this test is numerically ill-conditioned and usually
comes with two arbitrary corner solutions. I propose a corrected version that has a unique solution and avoids
the issue. This version of the GMM-rank test has some power to detect “useful” factors (red line). However, in
short samples with limited time-series observations, a direct test of the correlation coefficient has the highest
power to detect “useful” factors (black line).
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AR test to the linearized version of the consumption-based asset pricing model limits the risk

of encountering an ill-conditioned GMM objective function. However, the confidence intervals

of the GMM-AR test are large, which indicates a relatively low power of this approach. (3)

I point out that there is an easy-to-implement alternative available. Bootstrapped confidence

intervals, as implemented in Burnside (2011) for linear models, are robust to the“useless” factor

problem and come with more power to detect “useful” factors (Figure 3). If a factor is “useful,”

the bootstrapped confidence interval will be comparable to those based on asymptotic inference

(if the sample size is large enough). If a factor is “useless,” the bootstrapped estimates will be

non-standard distributed but still centered around zero (Figure 4). Confidence intervals based

on the bootstrap distribution are large and likely to include the value of zero. Importantly, the

bootstrap confidence intervals do not over-reject the coefficient of relative risk aversion being

different from zero as one benchmarks the point estimate with the distribution of a “useless”

factor and not with that of a “useful” factor (as would be the case when relying on asymptotic

standard errors).

There is a shortcoming to using bootstrap confidence intervals from an econometric point

of view. This method is not identification robust, as it is explained by Burnside (2011). If the

factor is“useless,”the parameter of interest cannot be identified from the data. This means that

the bootstrap confidence interval is uninformative about the parameter and does not tell us so

directly. I believe that this is a minor issue in applied research in the case of consumption-based

asset pricing. When results indicate that a factor is not priced with an economically reasonable

coefficient of relative risk aversion, such an outcome is usually interpreted as evidence against

the model. For example, in the case of reported consumption, it is well known that unreasonably

large point estimates of the coefficient of relative risk aversion are required to fit the equity

premium due to a lack of factor correlation. At least since Mehra and Prescott (1985), the usual

conclusion taken from this finding is that the model does not explain the equity premium. They

did not conclude that the model does a good job in explaining the equity premium but that

investors have a large coefficient of relative risk aversion. This example illustrates that it is
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advisable to look at the test results in the context of economic theory and not confine the

interpretation to a purely econometric perspective. Statistical inferences should go hand in

hand with economic inference.5

Fama-MacBeth methodology and the linear model: In another set of results, Kleibergen and

Zhan (2020) consider methods that evaluate whether a factor can help explain a cross-section

of 31 portfolio excess returns using a linearized version of the consumption-based model. To

this end, Kleibergen and Zhan (2020) propose replacing inference on the price of risk based on

the standard Fama and MacBeth (1973)/Shanken (1992) methodology with the GRS-Factor

Anderson-Rubin (GRS-FAR) test (which works analogous to the GMM-AR test).

I mainly criticize two aspects of their discussion: First, they overstate the “useless” factor

problem in the context of the Fama-MacBeth/Shanken approach when the sample size is small.

In line with Kan and Zhang (1999), I show that the “useless” factor problem is a large sample

issue and not a small sample one. But the considered consumption factors are annually sampled

and are a prime example of a small sample.

Second, if the asset pricing model is “misspecified” and cannot explain the data perfectly,

the GRS-FAR test is expected to be unable to provide inference on the price of risk and cannot

be expected to detect “useful” but imperfect factors (see Figure 5). However, previous research

has concluded that the model does not explain the data perfectly and is at best regarded

as “misspecified” (Savov, 2011; Kroencke, 2017). Again, I argue that a test procedure that is

robust against “useless” factors is not helpful for applied research if the test does not allow for

the detection of “useful” factors.

As before, an easy-to-implement alternative is to report bootstrap confidence intervals of

the price of risk, as has been done by Burnside (2011). However, the same caveats described

above regarding identification robustness apply.

5Identification robust inference might be a considerably more critical property in other applications, for
example, when there is little theoretical guidance on what magnitude of the parameter to expect.

6



What this paper is not about: This paper is not a general defense of the consumption-based

asset pricing model and the alternative consumption measures. I do not think this is necessary.

The alternative consumption measures are unlikely to explain all of the equity premium, and

are unable to explain the cross-sectional dispersion in mean excess returns of many anomaly

portfolios (e.g., Savov, 2011; Kroencke, 2017). The alternative consumption measures are also

unable to capture the time-series variation in the price-dividend ratio (e.g., Kroencke, 2017;

Kroencke, 2022). Recent survey-based evidence that has emerged at the investor level has been

disappointing (Choi and Robertson, 2020; Chinco, Hartzmark, and Sussman, 2022). But when

we want to point out the weaknesses of the simple consumption-based model, we want do so

based on powerful tests.

Outline: The outline of the paper is as follows. Section 1 describes the consumption-based

model and the data, and offers a preliminary analysis that comes with a minimum of as-

sumptions. Section 2 studies GMM-based inference for the non-linear model, while Section 3

compares the Fama-MacBeth methodology with the proposed alternatives for the linearized

version of the model. I conclude in Section 4. I skip a repetition of most of the formulas used

for the econometric tests. These are provided in detail in the Internet Appendix to Kroencke

(2017) and the paper by Kleibergen and Zhan (2020).6

6In addition, the replication code and data used in this paper can be found on the website of the author
and the journal.
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1. Model, Data, Preliminary Analysis

1.1. The Consumption-based Model

The basic model: The central pricing equation in asset pricing is

E (Mt+1R
e
t ) = 0, (1)

where Mt+1 is the stochastic discount factor (SDF) and Re
t is an asset return in excess of

the risk-free rate. A large part of the asset pricing literature tests how well different SDFs “fit”

the pricing equation.

In the classic consumption-based asset pricing model, the non-linear SDF is7

Mt+1 = δ

(
Ct+1

Ct

)−γ

, (2)

where Ct+1/Ct = 1+△Ct+1 is consumption growth, δ is a time preference parameter that

should be around one, and γ is the coefficient of relative risk aversion.8

A log-linearized version of the SDF is

Mt+1 ≈ 1− γ△C̃t+1. (3)

In this equation, △C̃t+1 is de-meaned consumption growth.9 Using the linearized SDF, the

pricing equation can be re-formulated so that the expected excess return is on the left-hand

side of the equation

E (Re
t ) = γ × Cov(Re

t ,△C̃t+1). (4)

7See, for example, Breeden, Gibbons, and Litzenberger (1989), Cochrane (2005), Jagannathan and Wang
(2007), Burnside (2011).

8In empirical work, consumption growth is usually measured as real per capita and returns are real. In
principle, one could also test a nominal version of the model.

9Depending on the type of approximation chosen, consumption growth can be measured as simple (e.g.,
Jagannathan and Wang, 2007) or in logs (e.g., Breeden, Gibbons, and Litzenberger, 1989). The difference
between both approximations is usually small in empirical data. I use simple growth rates.
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The coefficient of relative risk aversion is not a free parameter. It describes investors’

willingness to take a risk. For risk-averse investors, this parameter must be strictly positive.

It also cannot be arbitrarily large. As pointed out by Grossman and Shiller (1980) and Mehra

and Prescott (1985), among many others, large values imply an implausibly large degree of risk

aversion.10 Grossman and Shiller (1980) consider values for γ up to 6 as plausible. Mehra and

Prescott (1985) argue that γ = 10 is the highest level of risk aversion that can be considered as

economically plausible. Cov(Re
t ,△C̃t+1) captures the riskiness of an asset. A large covariance

suggests that the asset has low returns in bad times when consumption growth is also low

(and marginal utility is high), for example, during recessions. Such an asset will have a low

price and a high expected excess return, everything else being equal. It is probably this simple

prediction that gives the model its appeal.

In empirical work, the return-beta representation is popular for testing

E (Re
t ) = βC︸︷︷︸

Cov(Re
t ,△C̃t+1)

V ar(△C̃t+1)

× λ︸︷︷︸
γV ar(△C̃t+1)

, (5)

where βC is the consumption beta, and λ is the “price of risk.” λ is the same for all assets

and is determined by investor preferences for risk (γ) and the amount of fundamental (non-

diversifiable) risk in the economy (V ar(△C̃t+1)). βC can vary between assets and is also called

factor loading.

It is worth noting what the model does not predict. In particular, it does not predict

that βC ̸= 0 holds for all assets. An asset with βC = 0 just earns a zero excess return (i.e.,

the risk-free rate): E (Re
t ) = 0. Therefore, a test that indicates βC = 0 does not necessarily

contradict the model or indicate a “useless” factor in the economic sense.11 The model also

10Another way to illustrate the problem of a large γ is to report the implied risk-free rate, as proposed by
Savov (2011), log(Rf ) = −log(β) + γE (log(1 +△Ct+1)) − 1/2γ2V ar (log(1 +△Ct+1)). Because consumption
variance is relatively small, large γ usually implies an unrealistically large risk-free rate, which is also known
as the risk-free rate puzzle of Weil (1989). Lengwiler (2004) provides a detailed discussion and a review of the
literature.

11In principle, small betas might indicate “useless” test assets and not a “useless” factor. The mean excess
returns or the dispersion of mean excess returns may be too small for the identification of λ or γ. Tests for
identification are not tests of asset pricing models.
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does not predict a particularly large time-series regression R2, as it describes a relationship

between mean excess returns and consumption covariances. However, in line with Equation 4,

the time-series regression R2 should be distinct from zero if the mean excess return is different

from zero.

The alternatives: The basic model is a strong simplification of the real world and it is rea-

sonable to think about possible alternatives. A more realistic SDF might be written as

Mt+1 ≈ 1− ζγ△C̃t+1 − ϕf(st+1) (6)

where f(st+1) captures a function over a vector of additional drivers (st+1) of the SDF.

Setting ζ = 1 and ϕ = 0 nests the basic model. In fact, there is a rich and fruitful literature that

provides evidence in favor of the existence of additional (or alternative) drivers of the SDF.

Examples include Campbell and Cochrane (1999), Bansal and Yaron (2004), Yogo (2006),

Piazzesi, Schneider, and Tuzel (2007), Wachter (2013), Schreindorfer (2020), and many more,

including models that incorporate investor heterogeneity, ambiguity, learning, institutional

frictions, and outright irrationality.12

From an empirical point of view, consumption growth is already challenging to measure.

But the potential other factors st+1 are arguably even more challenging to capture in an

empirical analysis. Importantly, according to many advanced models, the consumption factor

is not unrelated with the additional factors st+1. Often, f(st+1) captures some mechanism that

amplifies basic consumption growth risk. For example, in the habit model of Campbell and

Cochrane (1999), a slow-moving habit changes investors’ attitude toward risk. It can amplify

the price reaction to large drops in dividends and consumption. Bansal, Kiku, and Yaron

(2012) propose a calibration of the long-run risk model that requires a significant portion of

“short-run” consumption risk. A test of the basic model can also be interpreted as a “partial”

test of a more advanced model.

12Among others, Adrian and Shin (2014), Adam, Marcet, and Nicolini (2016), Cujean and Hasler (2017),
and Andrei, Hasler, and Jeanneret (2019).
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For that reason, it is economically interesting to empirically test the basic model even if

one does not think that it is literally true. Because a researcher can be almost sure that the

model is misspecified, it might be better to write for asset i

E
(
Re

i,t

)
= βi,C × λ+ ai, (7)

where ai reflects an asset-specific component of the expected return that is not captured

by short-run consumption risk. In empirical tests, this component should show up as a pricing

error, a part of the mean excess return unexplained by the model. Accordingly, I argue that

it is of utmost importance to use statistical methods that allow a researcher to draw reliable

conclusions when the model is misspecified.

1.2. Some Preliminary Results

Table 1 reports some preliminary asset pricing results for the data used in Kroencke (2017) and

Kleibergen and Zhan (2020). The consumption measures are the “reported” consumption from

the NIPA accounts (Shiller, 1981; Mehra and Prescott, 1985), ultimate consumption (Parker

and Julliard, 2005), fourth-quarter consumption (Jagannathan and Wang, 2007), “garbage”

(Savov, 2011), and “unfiltered” consumption (Kroencke, 2017).13 Stock returns are sampled at

the end of December (Dec.) or time-aggregated (T.A.) to account for the time-aggregation bias

(e.g., Breeden, Gibbons, and Litzenberger, 1989; Cochrane, 1996; Kroencke, 2017). Details on

the data sources and construction are provided in Kroencke (2017).

Panel A shows the covariances, correlation coefficients, and consumption betas in the post-

war sample from 1960-2014. A significant factor correlation implies that the textbook methods

allow to identify the coefficient of relative risk aversion or the price of risk. I use bootstrap

re-sampling to compute 95% confidence intervals, similar to Savov (2011). The reported con-

sumption measure has an insignificant consumption covariance of 0.0039%. On the other hand,

13Parker and Julliard (2005) proposed a quarterly version of ultimate consumption in their paper. The annual
version of ultimate consumption shown in this paper is, therefore, not a fair comparison with the originally
proposed measure.
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Table 1 The Equity Premium and Alternative Consumption Measures

Description: Panel A reports the covariance, correlation and beta of alternative consumption measures with the
market excess return (T=55, N=1). Panel B shows the implied coefficient of relative risk aversion (γ) exploiting
the linearized relationship E [Re

m] = γ×Cov(Re
m,t,△Ct). The price of risk is defined as λ = γ/V ar(△Ct). The

implied equity premium imposes γ = 10, the maximum level of risk aversion considered plausible by Mehra
and Prescott (1985). The dataset is the same as in Kroencke (2017) and Kleibergen and Zhan (2020); equity
returns below Dec. (T.A.) are measured at the end of December (Time-Aggregated). Bootstrap re-samples are
used to determine 95% confidence intervals.

Interpretation: Reported consumption is insignificantly correlated with the market excess return (and might
be regarded as a “useless” factor) and does not explain the equity premium; also known as the equity premium
puzzle (Mehra and Prescott, 1985). Alternative consumption measures like garbage or unfiltered consumption
have large and significant correlation coefficients and explain a part but not all of the equity premium. Estimated
parameters (γ and λ) are later used to benchmark with other methods.

Short Sample (1960-2014) Full Sample (1928-2014)

E [Re
m] = 5.8 E [Re

m] = 7.3

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

Panel A: Identification

Covariance 0.39 26.04 7.29 7.09 19.64 4.87 48.54

Btrp c.i.95% <-6.8,8.2> <11.2,45.2> <-7.6,24.8> <-0.4,15.8> <6.2,35.8> <-7.0,17.4> <24.5,79.4>

Correlation 0.02 0.58 0.14 0.29 0.45 0.11 0.60

Btrp c.i.95% <-0.3,0.3> <0.3,0.7> <-0.2,0.4> <-0.0,0.5> <0.2,0.6> <-0.2,0.4> <0.4,0.7>

Beta 0.23 3.21 0.72 3.32 2.95 1.03 3.00

Btrp c.i.95% <-3.2,3.6> <1.9,4.5> <-0.7,2.1> <0.4,6.2> <1.4,4.5> <-0.9,2.9> <2.2,3.9>

Panel B: Implied Economic Quantities

Rel. Risk Aversion, γ 1465.83 20.16 79.16 81.45 29.38 149.35 14.98

Btrp c.i.95% <-2598.8,2365.5> <1.8,70.2> <-993.5,920.1><-424.2,807.7> <4.6,123.2> <-1650.4,1570.2> <4.8,38.3>

Price of Risk, λ % 25.07 1.63 8.07 1.74 1.96 7.07 2.42

Btrp c.i.95% <-37.3,45.5> <0.2,4.1> <-89.7,99.0> <-6.0,16.2> <0.3,6.2> <-71.3,63.8> <1.0,4.4>

Equity Premium, % 0.04 2.60 0.73 0.71 1.96 0.49 4.85

Btrp c.i.95% <-0.7,0.8> <1.1,4.6> <-0.7,2.4> <-0.0,1.6> <0.6,3.6> <-0.7,1.7> <2.4,8.0>
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the alternative consumption measures come with covariances in the range from 0.07% to 0.26%,

and the covariances for unfiltered consumption and garbage are significantly different from zero.

The overall conclusion does not change when considering the correlation coefficient or the beta.

In the full sample, there are no data for garbage available. As pointed out in Kroencke (2017),

an advantage of unfiltered consumption over garbage is that a longer time-period going back

to 1928 is available. The full sample is studied in detail in Kroencke (2017) but is not consid-

ered by Kleibergen and Zhan (2020). In the full sample, the covariance is 0.49% for unfiltered

consumption and is significantly different from zero.

Panel B provides some back-of-an-envelope calculations exploiting the approximate pricing

Equation 4. Following Campbell (2003), I divide the mean excess return of the market port-

folio by the consumption covariance to get the implied coefficient of relative risk aversion. I

use bootstrap re-sampling of this ratio to determine 95% confidence intervals. In the case of

reported consumption, this leads to a division of 5.8% by something close to zero. Thus, the

resulting coefficient of risk aversion is large and imprecisely measured as indicated by a large

95% confidence interval.

The same does not apply to the garbage measure or unfiltered consumption, which are

significantly correlated with stock returns. For garbage (unfiltered consumption), the point

estimate of the coefficient of relative risk aversion is 20 (29). The bootstrap confidence intervals

are wide but indicate that γ is significantly different from zero for garbage and unfiltered

consumption. In the full sample, unfiltered consumption gives a point estimate γ = 15, which

comes with a relative tight 95% confidence interval of {5, 38}.

I also consider estimates of the price of risk λ based on Equation 5. The results for reported

consumption indicate that this consumption measure is not priced. Garbage gives a significant

price of risk of 1.6% (95 c.i.: {0.2%, 4.1%}). Unfiltered consumption leads to a point estimate

of about 2.0% (95 c.i.: {0.3%, 6.2%}).

For factors with insignificant factor correlation (e.g., reported consumption), it is not ex-

pected that the parameters λ and γ can be identified, because one might “divide by zero” in
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the absence of estimation errors. As a result, the bootstrap percentiles cannot be regarded as

informative about the true parameter. Due to the lack of identification, the true parameter

can have any value. As can be seen for reported consumption, a factor with lack of correlation

is likely to come with an unreasonable large point estimate of γ and a very wide bootstrapped

confidence interval, far away from the economically reasonable range (between zero and ten).

A simple solution to the “division by zero problem” of “useless” factors is not to divide. To

this end, I impose an economically reasonable value for γ and then conduct inference on the

expected excess return implied by the factor covariance multiplied with γ (Equation 4). This

approach only requires multiplication and is comparable to the original Mehra and Prescott

(1985) tests. In the bottom rows of Table 1, I impose γ = 10, the largest value considered

plausible by Mehra and Prescott (1985), and I then ask how big the equity premium is given the

consumption covariance. For reported consumption, the implied equity premium is a meager

4 basis points and is insignificant. Garbage, by contrast, can explain a significant amount

of 2.60% (95 c.i.: {1.1%,4.6%}) of the equity premium. Unfiltered consumption can explain

1.96% (95 c.i.: {0.6%,3.6%}). Thus, in the most optimistic case (γ = 10), the alternative

consumption measures explain around 44% (2.6/5.8) and 33% (1.9/5.8) of the equity premium

in the short sample. The full sample point estimates indicate a somewhat larger share of 66%

(4.8/7.3) explained by unfiltered consumption. A zero consumption-based equity premium can

be rejected according to the 95% confidence interval.

To sum up, this section illustrates that alternative consumption measures and the mar-

ket excess return are statistically significantly correlated. These correlations are economically

relevant and imply that alternative consumption measures can explain part of the equity pre-

mium. However, this correlation is not large enough to fully explain the equity premium with

an economically reasonable coefficient of relative risk aversion. The results also do not rule

out alternative models (e.g., when consumption growth happens to correlate with alternative

drivers of the SDF). At best, the consumption-based model is misspecified. In the remainder

of the paper, I show that powerful tests confirm the preliminary results reported in Table 1.
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2. GMM Estimation and the Non-linear Model

2.1. Moment Conditions

It is common in the literature to test the non-linear version of the classic consumption-based

asset pricing model as stated in Equation 2. The GMM approach allows to estimate the

parameters of interest (δ,γ) by exploiting the pricing equation for N test asset excess returns,

0 = E
(
Mt+1R

e
t+1

)
. Accordingly, the GMM objective function is

minδ,γJT = gT (△Ct+1, R
e
t+1, γ, δ)WgT (△Ct+1, R

e
t+1, γ, δ)

′,

where W is a N × N weighting matrix and gT (△Ct+1, R
e
t+1, γ, δ) are 1 × N moment con-

ditions

gT (△Ct+1, R
e
t+1, γ, δ) =

1

T

∑
δ

(
Ct+1

Ct

)−γ

Re
t+1 − 0.

Because the time preference parameter δ does not affect the equity premium, Savov (2011)

and Kroencke (2017) fix this parameter to δ = 0.95.14 Thus, there is only one parameter to

be estimated, and a single moment condition is sufficient to estimate γ. It is common in the

literature to use the market excess return as the only test asset (N = 1) to obtain a baseline

estimate. In the following, I focus the discussion on this case.

The weighting matrix: As discussed in detail by Cochrane (2005), a different weighting ma-

trix W might be preferred in different situations, but it should be picked with care. Kroencke

(2017) uses W = 1. Kleibergen and Zhan (2020) prefer W = Ŝ−1, where15

14Instead, they report the implied risk-free rate as an indication of how well the model fits the (real) risk-free
rate. These estimates are (see Kroencke, 2017), for example, 94%, 30% and 17% for reported consumption,
unfiltered consumption and garbage. This shows that the alternative consumption measures can better explain
the risk-free rate than reported consumption but still imply too large numbers. The risk-free rate puzzle pointed
out by Weil (1989) is mitigated but not resolved. This differs from the statement in Kleibergen and Zhan (2020),
footnote 21.

15Kleibergen and Zhan (2020) do not describe the weighting matrix they use for their GMM estimator
in the main paper. Instead, they refer to their estimate as “the GMM estimate.” However, one can find the
specification of W in their replication code.
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S(△Ct+1, R
e
t+1, γ) ≡

∞∑
j=−∞

E
[
g(△Ct+1, R

e
t+1, γ), g(△Ct+1, R

e
t+1, γ)

]
. (8)

Using W = 1 (in the case of one moment condition) means that the GMM objective

function compares how different γ reduce the “pricing error” measured by gT . In contrast,

gT Ŝ
−1g′T , compares the impact of different γ on the ratio of the squared pricing error to its

variance. The second specification comes with one potential disadvantage. Specific parameter

values of γ might blow up estimates of S rather than reducing gT , as Cochrane (2005), pp.279,

warns. When the estimation is conducted with only one moment condition, the specification

W = Ŝ−1 loses its potential advantage to utilize the available moment conditions efficiently.

I show both objective functions for unfiltered consumption on the left-hand side of Figure

2. The objective function studied in Kroencke (2017) is steep for large absolute values of γ,

indicating large pricing errors, while the objective function of Kleibergen and Zhan (2020)

is flat and even slightly decreasing. This must come from S increasing even faster than the

pricing errors (this is the only difference between the two curves). Now, looking at the moment

condition, it is apparent that this is a power function of γ. Thus, it might not be surprising

that S(γ) eventually is a very large number for large enough values of |γ|. In fact, I find that

for example at γ = −5092 , Ŝ is computed to be infinity in the statistical software package

used, which leads to gT Inf
−1g′T = 0, even though gT is a pricing error as large as 1.16e+153

(in words, around one quinquagintillion). This is a race of a large pricing error versus a large

S, where S eventually wins.16 As a result, the objective function of Kleibergen and Zhan

(2020) has multiple minima, one reported at 22.5, as well as several others for γs somewhere

around -5000 and +7000. In the following, I refer to such a GMM objective function as an

“ill-conditioned” GMM objective function.

16This problem is not new in the literature. For example, Cochrane (2005, pp.215-216) warns about this
trap.

16



Figure 2. GMM Objective Functions and the GMM Trap
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Description: This figure shows the GMM objective functions for GMM estimation of the coefficient of relative
risk aversion (left sub-figure) and the GMM-rank test (right sub-figure).

Interpretation: Kleibergen and Zhan (2020) use ill-conditioned GMM objective functions that are always
arbitrarily rounded to zero by the statistical software package for large enough absolute values of γ (“GMM
trap”). For the GMM-rank test, the problem is particularly severe because the only local minima are on the
far left and the far right in the “GMM trap.” The implication is that it is impossible to conclude that factor
correlation is sufficient when this test is used. This problem is a numerical issue unrelated to the actual factor
correlation. For estimation of the coefficient of relative risk aversion, there is a third local minimum around
zero (behind the red line), and the result is up to luck. The GMM objective functions in Kroencke (2017) and
the modified GMM-rank test proposed in this paper are not subject to this numerical issue (red lines).

The J-test: The J-test is a test of whether the moment conditions are jointly equal to zero,

in general JT = gT Ŝ
−1g′T ∼ χ2

(#moments-#parameters). The same test statistic can be used for both

specifications for the weighting matrix W = 1 and W = Ŝ−1, as it can be verified using the

formulas provided by Cochrane (2005), p.255.17

2.2. The GMM-rank Test

If the factor and the test asset return are uncorrelated, it is not possible to identify the

parameter of interest (γ). Asymptotic inference is derived under the assumption that there is

17For W = 1, the formula for the covariance of gT collapses to S in this special case.
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factor correlation, which can lead to an over-rejection of the hypothesis that the factor is not

priced, that is, the H0: γ = 0.

Savov (2011) shows that the correlation between garbage and stock returns is economically

large, about 0.58 (he reports a bootstrapped standard error of 0.11). Kroencke (2017) finds

a similarly large correlation for unfiltered consumption. Table 1 shows that these correlation

coefficients are highly statistically significant. Nevertheless, Kleibergen and Zhan (2020) are

concerned about an insufficient correlation between consumption and stock returns such that

γ cannot be identified and GMM standard errors cannot be trusted.

To provide evidence for their claim of insufficient factor correlation, Kleibergen and Zhan

(2020) report a test of the first derivative of the moment condition

hT =
1

T

∑[
δ

(
Ct+1

Ct

)−γ

Re
t+1△ct+1

]
= 0, (9)

where △ct+1 is log-consumption growth. The GMM-rank condition is that hT ̸= 0. Rejection

of the H0: hT = 0 would indicate that there is sufficient factor correlation, which suggests

that the usual GMM-based inference is reliable. But for hypothesis testing, they re-estimate γ

using the moment function of the rank condition. They do not simply use the GMM estimates

coming from gT Ŝ
−1g′T , but rely on a new J-test that is based on hT Ŝ

−1h′
T .

I plot this new objective function on the right-hand side of Figure 2. I find that this GMM

estimate is certain to fall into the “GMM trap.” There is always a solution for γ around -5000

and +7000 because S is computed to be infinity at some point. The problem renders the GMM-

rank test meaningless, because there are only corner solutions for this objective function and

no (local) minimum is even close to the economically reasonable region or the initial GMM

estimate. Because the objective function divides by infinity at the corner solutions, the test of

H0: hT = 0 cannot reject. The problem is not an insufficient correlation but an ill-conditioned

GMM objective function.
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Size and power of the GMM-rank test: I illustrate the implications for empirical work in

Figure 1. I run a Monte Carlo simulation that imposes normal and i.i.d. returns and con-

sumption growth to generate 10,000 samples with T=55 (results for T=200 are reported in

the Appendix).18 I calibrate the simulation to the market excess return and unfiltered con-

sumption, except that I vary the population correlation coefficient between zero (the “useless”

factor) and 1.00 (the “most useful” factor one can hope for), which is reported on the x-axis.

Unfiltered consumption and garbage correspond to the middle area of the figure (correlation

between 0.40 and 0.60). The y-axis shows the percentage of the simulations where I can reject

the hypothesis that there is no factor correlation (more precisely, the H0: hT = 0).

I consider three different tests: i) the GMM-rank test, as reported in Kleibergen and Zhan

(2020), with the ill-conditioned GMM objective function, ii) a modified version of the GMM-

rank test that imposes the identity matrix (i.e.,W = 1), such that the GMM objective function

is well-behaved (see Figure 2), and iii) a direct test of the hypothesis that the correlation

coefficient is equal to zero (similar to Savov, 2011).19 The simple correlation coefficient test

has the potential advantage that GMM is not used to re-estimate the parameter γ, which is

likely to increase the small sample power of the test.

Figure 1 shows that the probability to reject the GMM-rank test (blue line) is virtually

zero no matter how large the correlation with the market factor is. The rank test as conducted

by Kleibergen and Zhan (2020) does not allow one to make a meaningful conclusion about

the rank condition. The corrected GMM-rank test proposed in this paper (red line) has the

power to detect “useful” factors. However, I find that a direct test of the correlation coefficient

is considerably more powerful in small samples (black line).

To sum up, the GMM-rank condition does not fail because of insufficient factor correlation,

as claimed by Kleibergen and Zhan (2020).20 The rank condition fails because the GMM

objective function used by Kleibergen and Zhan (2020) is numerically ill-conditioned.

18This data generation process is also used in large parts of the analysis by Kleibergen and Zhan (2020).
19The direct test is based on the t-statistic: t(ρ) = ρ

√
(N − 2) / (1− ρ2), which has N−2 degrees of freedom.

20Kleibergen and Zhan (2020, p.542): “..., this rank condition is jeopardized due to the weak correlation
between consumption growth and asset returns.”
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2.3. The GMM-AR Test

I now turn to GMM-based inference on the coefficient of relative risk aversion. I run a Monte

Carlo simulation that imposes normal and i.i.d. returns and consumption growth to generate

1,000 samples with T=55. As before, I vary the population correlation coefficient between zero

(the “useless” factor) and 1.00, which is reported on the x-axis. I then count the fraction of

simulations in which asymptotic GMM standard errors indicate that the coefficient of relative

risk aversion is estimated to be significant at the 5% level.21

Figure 3 shows the probability of finding a significant coefficient of relative risk aversion.

For a useless factor, γ is not identified and this probability should not exceed 5%. As can be

seen, the GMM-based standard errors over-reject the “useless” factors.

To avoid this issue, Kleibergen and Zhan (2020) propose using the GMM-AR test instead of

the GMM-based standard errors. To this end, they calculate the p-value for the test H0: JT = 0

at various hypothesized values γ = γ0 . The 100×(1−0.05)% confidence set for γ then contains

the bounds where JT = 0 cannot be rejected. The confidence set is unbounded when JT is

insignificant at the entire set of possible values of γ. It is disjointed when the confidence set is

open from one side. The confidence set is empty when JT is always significantly different from

zero. It is not possible to conduct inference on γ when the confidence interval is unbounded,

disjointed or empty. Accordingly, these cases count in the simulation as “the H0: γ = 0 is not

rejected.”

The GMM-AR test is robust to“useless” factors, as can be seen by the blue line in Figure 3.

However, I find that the GMM-AR test has a low power to detect“useful” factors. For example,

a hypothetical factor with a population correlation coefficient of 0.90 would be detected with

a probability of less than 30%. For a factor with an economically large correlation coefficient

of 0.50, the probability is 5%.

21I use the objective function gT Ŝ
−1g′T as in Kleibergen and Zhan (2020) to allow for comparisons with their

analysis.
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Figure 3. The Power of GMM-based Inference on the Coefficient of Relative Risk Aversion
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Description: This figure shows the Monte Carlo simulation-based rejection probability of finding a significant
coefficient of relative risk aversion (γ) for GMM estimation with the non-linear moment condition

E

[
δ

(
Ct+1

Ct

)−γ

Re
t+1

]
= 0.

Results are based on 1,000 draws of multivariate normally distributed data calibrated to the market excess
return as the single test asset (N=1) and a hypothetical consumption factor with T=55 years of time-series
observations. The far left in the figure shows the rejection probability of a consumption factor that is in the
population uncorrelated with the market excess return (“useless” factor). These results can be interpreted as
the size of a test. Moving from the left to the right increases the population correlation coefficient from zero to
1.00 (“useful” factors). These results can be interpreted as the power of the tests. The vertical lines indicate the
sample correlation coefficient of alternative consumption measures (see Table 1 for further details). The blue
line corresponds to the GMM-AR test as reported in Kleibergen and Zhan (2020). The red line corresponds
to inference based on the t-statistic using GMM standard errors (textbook approach). The black line reports
results when using 95% confidence intervals based on a pairwise bootstrap (similar to Burnside, 2011).

Interpretation: GMM standard errors over-reject γ estimates for “useless” factors when testing the non-linear
pricing equation. Results have to be carefully interpreted, e.g. by asking whether the estimated parameter γ is
economically reasonable or whether the factor correlation allows identifying the parameter of interest (e.g., by
using the powerful tests shown in Figure 1). The GMM-AR test, as proposed by Kleibergen and Zhan (2020),
does not over-reject “useless” factors but has only limited power to detect “useful” factors. Bootstrap confidence
intervals also do not over-reject “useless” factors but have relatively high power to detect “useful” factors.
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2.4. GMM Bootstrap Confidence Intervals

An alternative to the GMM-AR test is to conduct a pairwise bootstrap and to report the con-

fidence interval of the bootstrapped GMM estimates of the coefficient of relative risk aversion.

The black line in Figure 3 illustrates that such bootstrap confidence intervals do not over-reject

“useless” factors and, at the same time, remain powerful for detecting “useful” factors.

To illustrate why bootstrap confidence intervals do not over-reject, I report in Figure 4

the distribution of GMM estimates from the Monte Carlo simulation for selected population

correlation coefficients. For the “useless” factor, the distribution is centered around zero and is

non-standard. When I consider the simulation results with increased time-series observations

(T=200), the distribution becomes even wider instead of narrower, which shows that it is

not possible to identify the parameter. Intuitively, sample covariances are closer to zero in

the larger sample, resulting in more γ estimates that are further from zero. However, the

bootstrap confidence interval will take the non-standard shape and the width of the distribution

into account and, therefore, avoids an over-rejection problem. From the figure, it is clear

that bootstrap standard errors (or t-statistics) do not work, as they require a distributional

assumption. For the linear version of the model, Burnside (2011) provides bootstrap confidence

intervals in his analysis to mitigate the risk of over-rejecting “useless” factors. He stresses that

the bootstrap confidence interval is not identification robust. From the confidence intervals

alone, a researcher cannot infer that a factor is“useless”and the parameter cannot be identified,

or that the true parameter is around zero.22

22Zhan (2010) proposes to utilize the fact that the bootstrap distribution of estimates is quite different
between “useless” and “useful” factors to detect a lack of identification. A researcher concerned about weak
identification (and not just the over-rejection problem) could conduct such a test or one of the powerful tests
reported in Figure 1.
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Figure 4. Monte Carlo Simulation: Distribution of GMM Point Estimates

Description: This figure shows the distribution of GMM estimates of the coefficient of relative risk aversion
from the simulated data in Figure 3. Below “strong,” the correlation between consumption growth and the
market excess return is imposed to be 0.80. Below “empirical,” the correlation between unfiltered consumption
growth and the market excess return is similar to the empirical data (0.45). Below “useless,” the correlation
between consumption growth and the market excess return is imposed to be zero.

Interpretation: For the strong and the empirical factors, the distribution becomes more normally distributed
and gets narrower when the sample size increases. For the “useless” factor, the distribution is non-standard
but centered around zero and gets wider when the sample size is increased (indicating a lack of identification).
Bootstrapped standard errors are therefore not applicable. But bootstrapped confidence intervals will account
for the non-standard shape of the distribution and they will avoid an over-rejection problem as one does not
incorrectly rely on the asymptotic distribution of a “useful” factor.

2.5. Empirical Results Revisited

The non-linear model. In Table 2, I show the GMM results for the short sample (as in

Kleibergen and Zhan, 2020) and the full sample (not shown in Kleibergen and Zhan, 2020).

The reported consumption measure requires an unreasonably large coefficient of relative risk

aversion of 137 and is not able to set the single moment condition (the pricing error) to zero

(JT = 0.85). While the estimate for γ is significant, the unreasonably large point estimate and
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the non-zero pricing error allow to conclude that reported consumption has no explanatory

power for the equity premium (e.g., Mehra and Prescott, 1985, Savov, 2011, Kroencke, 2017).

The garbage measure allows for an estimate of the coefficient of relative risk aversion of 16.

Unfiltered consumption provides an estimate of 23. Both estimates are significant at the 10%

level based on GMM standard errors. These two estimates also come close to the economically

reasonable range between zero and ten. All of the alternative consumption measures allow to

set the single moment condition to zero (JT = 0.00). In the full sample, unfiltered consumption

provides an estimate of 10, which is significant at the 5% level.

In contrast, the GMM-AR test is for all specifications unbounded/disjointed. Kleibergen

and Zhan (2020) argue that the unbounded GMM-AR test is symptomatic of insufficient factor

correlation for all of the considered consumption measures. To provide evidence for this claim,

they report the p-value of the GMM-rank test (p(rank), KZ), which indeed does not allow one

to reject the null hypothesis of insufficient factor correlation.

However, as shown in Figure 1, this GMM-rank test has no power to detect “useful” factors

and will also indicate insufficient correlation for a perfectly correlated factor. A similar issue

plagues the GMM-AR test (Figure 3). When I impose the identity matrix for the GMM-

rank test, the test is well-behaved and powerful (Figure 1). In the table, I find that garbage

and unfiltered consumption have p-values below 0.05 and pass the “corrected” version of the

GMM-rank test. The direct test of factor correlations (p(corr)) corroborates this conclusion;

the Q4-Q4 measure now also passes. This suggests that traditional GMM-based inference is

actually trustworthy when using alternative measures of consumption.

In Table 2, I also report 95% bootstrap confidence intervals for γ. As shown in Figure

3, the bootstrap confidence intervals do not over-reject “useless” factors and are powerful for

detecting “useful” factors. They are large and include the value of zero for the consumption

measures that fail the simple factor correlation test (e.g., reported consumption), and they do

not include zero for the consumption measures that pass this direct test for sufficient factor

correlation (garbage, Q4-Q4, and unfiltered consumption).
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Table 2 GMM Estimates for the Coefficient of Relative Risk Aversion: Non-linear Model

Description: This table shows estimates of the coefficient of relative risk aversion (γ) using the non-linear GMM
moment condition:

E

[
0.95

(
Ct+1

Ct

)−γ

Re
t+1

]
= 0.

The market excess return is the single test asset. Below the GMM estimate of γ is the GMM standard error, and
the 95% confidence interval of γ according to a pairwise bootstrap or the GMM-AR test. JT is the value of the
objective function. p(rank), KZ, is the p-value to the GMM-rank test as in Kleibergen and Zhan (2020), which
leads to an ill-conditioned objective function (Figure 2). p(rank), corrected, is the p-value for an alternative
version of the GMM-rank test where the objective function is well-behaved (also shown in Figure 2). p(corr),
is the p-value for a direct test of the correlation coefficient. The short sample is considered by Kleibergen and
Zhan (2020) but not the full sample period.

Interpretation:
According to the GMM-rank test, as implemented by Kleibergen and Zhan (2020), no consumption factor is
significantly correlated with the market excess return. The unbounded/disjointed GMM-AR confidence intervals
do not allow to conclude that consumption has explanatory power for the equity premium. However, the direct
test of the correlation coefficient indicates that garbage, Q4-Q4, and unfiltered consumption are significantly
correlated with the market excess return. The bootstrap confidence intervals do not include zero and indicate
that garbage, Q4-Q4 and unfiltered consumption help to explain the equity premium.

The difference in the test outcomes are in line with the power curves shown in Figure 1 and Figure 3. The
GMM-AR and the GMM-rank tests suffer from the “GMM trap” problem and have low or no power to detect
“useful” factors. The modified GMM-rank test, or testing the correlation coefficient directly, is considerably
more powerful in detecting“useful” factors (Figure 1). Bootstrap confidence intervals do not over-reject“useless”
factors and are powerful in detecting “useful” factors (Figure 3). Kleibergen and Zhan (2020) attribute the
difference between GMM-AR test and GMM standard errors to an incorrect size of the textbook approach in
the presence of a “useless” factor. Except for reported consumption, the extended results in this paper show
that the difference in the two tests can be attributed to the low power of the GMM-AR test.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 & N=1 T=87 & N=1

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

γ 137.14 15.63 42.35 64.05 22.53 36.86 10.32

se(γ) 52.82 8.30 23.60 40.41 12.13 13.36 4.55

Btrp c.i.95% <-2806.2,1030.9> <1.5,92.7> <-1185.6,1644.7> <7.6,1798.9> <2.8,131.6> <-181.5,592.9> <4.3,206.3>

GMM-AR c.i.95% unb./disjointed unb./disjointed unb./disjointed unb./disjointed unb./disjointed unb./disjointed unb./disjointed

JT 0.85 0.00 0.00 0.00 0.00 0.00 0.00

p(rank), KZ 1.00 0.29 0.29 0.50 0.29 0.30 0.31

p(rank), corrected 1.00 0.00 0.14 0.14 0.00 0.00 0.00

p(corr) 0.90 0.00 0.32 0.03 0.00 0.30 0.00
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The linearized model: If a researcher still wants to perform the GMM-AR test for consumption-

based asset pricing, a potential solution could be to consider the linearized version of the model

(Equation 4), which means that we are back to the model analyzed in Section 1. Because this

function is linear in γ, it is less likely that S will grow faster than the pricing error. In ad-

dition, the GMM-rank test of this specification has the desirable economic interpretation of

testing directly consumption covariances, H0: Cov(Re
t ,△Ct+1) = 0, which is also invariant of

γ. Rejection of this hypothesis indicates that factor correlation is sufficient and that GMM

standard errors are reliable.

The results are reported in Table 3. I find that the same consumption measures that pass

the more powerful rank tests in Table 2 now also pass the rank test of the linear model.

The GMM-AR test also leads to a bounded confidence set in these cases and indicates that

consumption is priced. Point estimates are similar to Table 1. Bootstrap confidence intervals are

somewhat tighter compared to the GMM-AR counterparts but allow for the same conclusions

in this application.

The benefit of the GMM-AR test is that unbounded/disjointed confidence intervals directly

indicate a lack of identification. The economically reasonable range is often described as being

from zero to ten (Mehra and Prescott, 1985). Against this backdrop, a bootstrap confidence

interval of {-350, 2,784,373} for reported consumption is, in practical terms, very much the

same thing as an unbounded/disjointed confidence interval.

Summary of GMM estimates: The GMM-rank test and the GMM-AR test as they are im-

plemented in Kleibergen and Zhan (2020) are not in line with the general idea of providing

robust inference. Both suffer from the GMM trap and are inconclusive even when factor cor-

relation is strong. If low factor correlation is a concern, it is more useful to test the factor

correlation directly and to rely on GMM standard errors. A reliable alternative is to report

bootstrap confidence intervals.

26



Table 3 GMM Estimates for the Coefficient of Relative Risk Aversion: Linearized Model

Description: This table shows estimates of the coefficient of relative risk aversion (γ) using the linear GMM
moment condition:

E (Re
t )− γ × Cov(Re

t ,△Ct+1) = 0.

The market excess return is the single test asset. Below the GMM estimate of γ is the GMM standard error,
and the 95% confidence interval of γ according to a pairwise bootstrap or the GMM-AR test. JT is the value of
the objective function. p(rank), is the p-value for the GMM-rank test which is equivalent to test the hypothesis
H0: Cov(Re

t ,△Ct+1) = 0. p(corr), is the p-value for a direct test of the correlation coefficient.

Interpretation: A linearized version of the model is robust to the “GMM trap” problem. Now both the boot-
strap and GMM-AR confidence intervals allow for the same conclusion that garbage, Q4-Q4 and unfiltered
consumption help to explain the equity premium. GMM standard errors require testing at a higher significance
level to come to the same conclusion.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 and N=1 T=87 and N=1

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

γ 1465.83 20.16 79.16 81.45 29.38 149.35 14.98

se(γ) 10010.85 13.09 89.35 59.62 20.36 192.99 8.38

Btrp c.i.95% <-350.3,2784373.2> <3.6,81.2> <-103.6,1687182.3> <12.7,958.1> <4.6,142.3> <-415.5,2032094.4> <4.4,47.8>

GMM-AR c.i.95% unb./disjointed (4.4,115.9) unb./disjointed (18.3,4359.1) (4.9,201.6) unb./disjointed (4.4,66.0)

JT 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(rank) 0.88 0.01 0.28 0.04 0.01 0.38 0.01

p(corr) 0.90 0.00 0.32 0.03 0.00 0.30 0.00
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3. The Fama-MacBeth Method and the Linearized Model

Kleibergen and Zhan (2020) also consider methods to test linear cross-sectional asset pric-

ing models (Equation 5) for a large cross-section of stock returns (N=31). In this context,

I mainly criticize two points: First, they overstate the “useless” factor problem of the Fama-

MacBeth/Shanken methodology. In particular, they claim that the textbook approach cannot

be trusted and suffers from a “malfunction,” such that a researcher is likely to over-reject the

hypothesis that a “useless” factor cannot price a cross-section of stock returns. I show that

this claim is false and that a researcher will not over-reject a “useless” factor if the sample size

is small, as in their empirical application. The over-rejection problem of “useless” factors is a

large sample problem and not a small sample one, as it is also stated in the classic study by

Kan and Zhang (1999).

Second, the proposed alternative procedure, the GRS-FAR test, is not useful for inference

on the price of risk (λ) when a model is misspecified. In this case, the expected confidence

interval is“empty”and it is not possible to reject the H0: λ = 0. The problem is not a numerical

issue, as for the GMM-based tests, but simply that the GRS-FAR test is expected to be unable

to provide inference on the price of risk when the model is misspecified.23 From the discussion

provided by Kleibergen and Zhan (2020), I think it is possible (but not straightforward) to

see that the GRS-FAR test cannot be expected to allow for inference on the price of risk for

misspecified models.24 Importantly, Kleibergen and Zhan (2020) claim that the GRS-FAR test

is appealing for inference on the price of risk in consumption-based asset pricing. I disagree

because this claim does not recognize that the literature regards the consumption-based asset

pricing models as misspecified (Savov, 2011; Kroencke, 2017).

Moreover, a better alternative is available for testing the linearized model. As shown in

a more general setting by Kroencke and Thimme (2020), bootstrap confidence intervals (as

23This problem also emerges in the GMM-based tests of the non-linear model, when N > 1.
24In the introduction of Kleibergen and Zhan (2020) the following is stated (p.508): “In this paper, we

propose two straightforward asset pricing tests that, unlike traditional tests, are valid for all possible strengths
of identification of the risk premia.”One has to digest the paper to find the information that the empirically
relevant case of misspecified models does not count as “all possible strengths of identification.”
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applied by Burnside, 2011) are robust to the “useless” factor problem independently of the

sample size and even account for model misspecification. Moreover, Kroencke and Thimme

(2020) show that the bootstrap confidence intervals are more powerful compared to a wide

range of other methods that have been proposed in the literature.

3.1. Cross-Sectional Estimation of the Price of Risk

Here, I provide a brief review of the Fama-MacBeth/Shanken methodology and the GRS-FAR

test.25

The Fama-MacBeth/Shanken: This methodology provides a simple way to estimate the price

of risk (λ) in the expected excess return-beta relationship

E
(
Re

i,t

)
= βC,i × λ. (10)

It rests on the following three steps:

1. Estimate the factor betas (βC,i) using time-series regressions for the i = 1, .., N test asset

returns that are tested.

2. Run a cross-sectional regression of the sample means of the excess returns of the N test

assets on the N estimated factor betas to get an estimate of the price of risk λ.

3. Compute Shanken (1992)-standard errors for λ that account for the betas being estimated

in the first step.26

A popular alternative is to estimate the model with a cross-sectional intercept (λ0) which can

be interpreted as a “common” pricing error

25For a more detailed and complete discussion, see Cochrane (2005), Burnside (2011), and Kleibergen and
Zhan (2020).

26Shanken (1992) provides the correction term for the standard errors when estimation is with the intercept.
When the intercept is imposed to be zero, the correction term for the standard errors can be found in Cochrane
(2005), or Burnside (2011), and the replication code to this paper. Kleibergen and Zhan (2020) only include
the Shanken correction when they estimate the model with the intercept and omit it when they estimate the
model without an intercept.
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E
(
Re

i,t

)
= λ0 + βC,i × λ. (11)

In this case, the common pricing error (λ0) is the part of the expected return not explained

by the model (e.g., Burnside, 2011). An economic argument can be, for example, that the

subtracted risk-free rate includes a safety/liquidity premium, and λ0 allows one to account for

this.27 Statistically, the additional degree of freedom (λ0) makes it easier to fit mean returns in

the data. But it also means that an additional parameter needs to be identified from the data,

which can reduce the power of empirical tests in small samples (see Kroencke and Thimme,

2020 for a detailed analysis).

GRS-FAR test: The GRS-FAR test proposed by Kleibergen and Zhan (2020) can be imple-

mented according to the following steps:

1. De-mean the risk factor and add back a hypothesized price of risk.

2. Estimate the factor alphas (ai, or pricing errors) using time-series regressions for the

i = 1, .., N test asset returns using the modified risk factor.

3. Compute the GRS-test (Gibbons, Ross, and Shanken, 1989) on the joint significance of

the N alphas.

4. Repeat the steps one to three for a wide range of values for the hypothesized price of

risk.

5. The GRS-FAR confidence set is the region of the price of risk where the GRS-test does not

reject that the alphas are jointly significantly different from zero at a given significance

level.

Kleibergen and Zhan (2020) show how to adapt the GRS-FAR test to a test with a common

pricing error (λ0).

27See, for example, Parker and Julliard (2005).
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The GRS-FAR test produces bounded confidence sets when there is a single region where

the pricing errors are insignificant according to the GRS-test. In this scenario, it is possible to

conduct inference on the price of risk (λ). The confidence set is unbounded when the pricing

errors are insignificant at the entire set of possible values of the price of risk. It is disjointed

when the confidence set is open from one side. The confidence set is empty when the pricing

errors are always significant. It is not possible to conduct inference on the price of risk when

the confidence interval is unbounded/disjointed or empty.

With increasing sample size, the power of the GRS-test will increase. The implication

for applied research is that only a correctly specified model (all assets have a population

pricing error of exactly zero) is expected to provide a bounded confidence interval in a large

enough sample. If the model is misspecified (at least one single pricing error is non-zero), the

expected result from the GRS-FAR test is an empty confidence interval. In other words, with

an increasing sample size, the GRS-FAR test is expected to allow for inference on the price of

risk only if the model is expected to explain all mean excess returns perfectly.

3.2. Are Fama-MacBeth Estimates “Trustworthy”?

Kleibergen and Zhan (2020) state that they are worried about inference based on Fama-

MacBeth regressions in the usually rather small samples observed in consumption-based asset

pricing. They mainly refer to the earlier literature, in particular the studies by Kan and Zhang

(1999) and Kleibergen (2009) to motivate their worries.28 Surprisingly, I cannot find evidence

in this literature that Fama-MacBeth regressions cannot be trusted in small samples. Kan and

Zhang (1999) show that Fama-MacBeth regressions over-reject “useless” factors in (very) large

samples. But they also show that Fama-MacBeth regressions under-reject “useless” factors in

small samples, which is the relevant case in consumption-based asset pricing when T=55. The

over-rejection problem of “useless” factors is a large sample problem and not a small sample

28Kleibergen and Zhan (2020. p.508): “For instance, Kan and Zhang (1999a) and Kleibergen (2009) warn
that the t-test in the FM two-pass procedure can spuriously favor risk factors that are independent of or weakly
correlated with asset returns, respectively.”
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problem.

The evidence provided in Kleibergen and Zhan (2020) is based on power curves that can

be also found in Kleibergen (2009). However, these power curves vary the price of risk (λ) and

not the population factor betas (i.e., the population correlation coefficients). By construction,

these power curves do not include the “useless” factor case where the population correlation

coefficients are exactly zero. In the Appendix, I report the results of a replication and extension

of this type of analysis. I find that the Kleibergen and Zhan (2020) power curves for unfiltered

consumption actually indicate no problem with the Fama-MacBeth approach. Moreover, when I

construct power curves that take empirically relevant cases of misspecified models into account,

the traditional Fama-MacBeth approach is arguably more “trustworthy” in small samples than

the GRS-FAR test.

3.2.1. Power Curves with a “Useless” Factor

In this section, I fill this gap and study the properties of the Fama-MacBeth method and

alternatives when a“useless”factor is actually present. To this end, I closely follow (and extend)

the simulation design conducted by Kan and Zhang (1999). In line with Kan and Zhang (1999)

and Kleibergen and Zhan (2020), I use a Monte Carlo simulation that imposes normal and i.i.d.

returns and consumption growth to generate 10,000 samples. I consider the short sample period

with T=55 and N=31 test assets. The true factor imposes the sample correlation of unfiltered

consumption as the population correlation, Ft,true. In order to study a misspecified model, I

impose the sample pricing errors of unfiltered consumption as the population pricing errors in

the simulation. The “useless” factor has the same mean and standard deviation as unfiltered

consumption, but I impose a zero correlation on all stock returns, Ft,useless. To construct a

power curve, I form a portfolio of the “useless” factor (Ft,useless) and the true factor (Ft,true)

and determine the correlation to the true factor using the equation

Ft = ρFt,true +
√

(1− ρ2)Ft,useless,
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where ρ is the population correlation coefficient of the “measured” factor Ft with the true

factor. I then use the Fama-MacBeth methodology with Shanken standard errors and the GRS-

FAR confidence intervals to test the hypothesis that the price of risk (λ) is zero, H0: λ = 0, at

the 5% significance level. Estimation is without an intercept.29 I then count how often I can

reject the null hypothesis across the 10,000 samples.

The results for ρ = 0 match with the simulation experiment by Kan and Zhang (1999). The

results for ρ > 0 extend the analysis by Kan and Zhang (1999) and illustrate how powerful

a method is in detecting “useful” factors that vary in their correlation to the test assets. For

ρ = 1.0, the population properties of the factor are equal to the sample estimates of unfiltered

consumption.

Figure 5 summarizes the results. Similar to Kan and Zhang (1999), I find that the Fama-

MacBeth/Shanken standard errors (blue line) do not over-reject“useless”factors (x-axis: ρ = 0)

in the small sample with T=55 years. For the empirical factor (x-axis: ρ = 1.0) , the Fama-

MacBeth/Shanken methodology finds a significant price of risk in about 80% of the simulations

and is relatively powerful. The GRS-FAR test does not “over-reject” useless factors. However,

this test has an almost flat power curve for misspecified models and usually does not detect a

factor that helps to explain some of the mean returns.

The results presented apply to the considered set of test assets, the sample size, and the

estimation without an intercept. For a different set of test assets, when the sample size is

larger, or when the estimation is with an intercept, the Fama-MacBeth approach might over-

reject “useless” factors. Examples are provided in the Appendix. For this reason, it is generally

advisable to consider a method which is robust to the “useless” factors problem.

29The results for the estimation with an intercept can be found in the Appendix.
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Figure 5. FMB/Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas):
Misspecified Model
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GRS-FAR, KZ2020

FMB/Shanken, textbook

bootstrap c.i.

Description: This figure shows the Monte Carlo simulation-based rejection probability of the H0: λ = 0 for
tests of the linear factor model

E
(
Re

i,t

)
= βC,i × λ.

Results are based on 10,000 draws of multivariate normally distributed data calibrated to the 31 test assets
and unfiltered consumption (as reported in Table 4). The data have T=55 time-series observations (as in the
empirical data). The far left in the figure shows the rejection probability of a consumption factor that is in
the population uncorrelated with the market excess return (“useless” factor). These results can be interpreted
as the size of a test. Moving from the left to the right increases the population correlation coefficient from
zero to 1.0 with the “true” factor (the “true” factor imposes the sample properties of unfiltered consumption as
the population properties). These results can be interpreted as the power of the tests for an empirical factor.
The blue line corresponds to a Fama-MacBeth/Shanken t-test for the H0: λ = 0 at the 5% significance level
(textbook approach). The red line corresponds to inference based on the GRS-FAR 95% confidence interval, as
in Kleibergen and Zhan (2020). The black line corresponds to inference based on the bootstrap 95% confidence
interval, as in Burnside (2011).

Interpretation: The Fama-MacBeth/Shanken approach does not over-reject “useless” factors in small samples,
and a researcher can correctly conclude that a “useless” factor is “not significantly priced.” This result is in
line with Kan and Zhang (1999) and illustrates that Kleibergen and Zhan (2020) overstate the relevance
of the over-rejection problem of Fama-MacBeth/Shanken t-statistics in the presence of a “useless” factor in
consumption-based asset pricing. The GRS-FAR test is robust to the “useless” factor problem, but it has only
low power to detect “useful” factors when the model is misspecified. The GRS-FAR test requires the model to
be correctly specified to be expected to allow for inference on the price of risk, which is unrealistic in empirical
work. The bootstrap confidence interval does not over-reject “useless” factors and is powerful in detecting
“useful” factors.
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Bootstrap confidence intervals: Kroencke and Thimme (2020) provide a comprehensive

comparison of various alternative “robust” approaches for cross-sectional asset pricing tests

of linear models. A method that stands out is the pairwise bootstrap confidence interval, as

reported by Burnside (2011). The bootstrap confidence interval does not over-reject “useless”

factors. At the same time, this method accounts for model misspecification and is powerful in

detecting “useful” factors. For this reason, I also report results for the bootstrap confidence

interval for consumption-based asset pricing in Figure 5 (the black line). The bootstrap con-

fidence interval has the correct size and is powerful in detecting “useful” consumption factors.

In the Appendix, I show that this is also the case when the Fama-MacBeth approach is not

size correct, for example, in large samples.

Mirroring the discussion for GMM above, the bootstrap confidence interval comes with the

disadvantage that this is not an identification robust method, as explained by Burnside (2011).

When the factor is useless, the confidence interval will not indicate that the price of risk is

around zero but rather that the price of risk cannot be identified from the data. I cannot see

that this is a major problem in consumption-based asset pricing. An insignificant price of risk

is usually interpreted as evidence against the model and is, therefore, not used for inference

on the “true” price of risk.

3.3. Rank Tests, Univariate Factor Tests, and Tests of Mean Returns

Kleibergen and Zhan (2020) propose pre-testing risk factors to gauge whether the Fama-

MacBeth/Shanken method is expected to provide valid inference. However, the proposed rank

tests are not necessarily powerful in detecting useful factors in small samples when N is close

to T. Testing with both a larger T and a smaller N can help improve power. In addition, the

required normal-i.i.d. assumption is violated in the empirical data and the test is potentially

inaccurate. I propose to apply a rank plausibility test on a shrunken cross-section with N=1.
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3.3.1. Multivariate Rank Tests

Inference based on the Fama-MacBeth method can be expected to be valid when the factor

betas of the test assets are in the population different from zero (estimation without constant)

or different from each other (estimation with a constant). Multivariate asymptotic Wald-tests,

which are heteroskedasticity and autocorrelation robust, are straightforward to conduct but are

prone to over-rejection when T is small, and N is relatively large, as pointed out by Kleibergen

and Zhan (2020).30 To avoid this problem, Kleibergen and Zhan (2020) propose conducting a

finite sample F-test that requires the data to be normal-i.i.d. They show that the F-test does

not over-reject “useless” factors when N is close to T. But they do not investigate the power

to detect useful factors (particularly when the normal-i.i.d. assumption is violated).

3.3.2. Univariate Factor Tests as a Rank Plausibility Test

The empirical data are not normal-i.i.d. and in such a setting a multivariate F-test is not nec-

essarily powerful for detecting“useful” factors when N is close to T.31 For this reason, I propose

a simple rank plausibility test. More specifically, I shrink the cross-section to two portfolios

formed on the test assets mirroring the two respective F-tests suggested by Kleibergen and

Zhan (2020). The first portfolio invests equally in all (“ALL”) test assets, RALL,t. Motivated

by financial theory, I use a t-test of the hypothesis that the beta of the “ALL” portfolio is

significantly larger than zero

RALL,t = a+ βC,ALL△C̃t + et,

H0 : βC,ALL > 0.

30Kroencke (2017) reports a multivariate asymptotic test on the joint significance of consumption betas.
Kleibergen and Zhan (2020) show that this test over-rejects and is not reliable.

31In additional tests (provided in the replication code to this paper), I find that the multivariate rank test
would be powerful for detecting sufficient factor correlation for unfiltered consumption when the data satisfy the
normal-i.i.d. assumption. However, I do not provide evidence on the power when the normal-i.i.d. assumption
is relaxed.
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The beta of this portfolio is equal to the average of the betas of the test assets. A significant beta

of the “ALL” portfolio suggests that there should be sufficient covariation in the cross-section

to determine the price of risk in Fama-MacBeth regressions that impose a zero intercept.32

The second portfolio constructs a standard Fama and French (1993) high-minus-low (“HML”)

portfolio based on the characteristics of the test assets. It goes long in the 50% of test assets

that are predicted by a lagged characteristic to have a high mean return and short in the 50%

of the test assets that are predicted by a lagged characteristic to have a low mean return.33

Once again, motivated by finance theory, I use a t-test of the hypothesis that the beta of the

“HML” portfolio is significantly larger than zero

RHML,t = a+ βC,HML△C̃t + et,

H0 : βC,HML > 0.

The beta of this portfolio can be used to test whether there is a spread in betas that

lines up with predicted mean excess returns. For univariate testing, it is far more likely that

I can rely on asymptotic but heteroskedasticity robust (HC), or heteroskedasticity robust and

autocorrelation (HAC) robust tests even when T is small.

While the univariate tests do not replace rank tests in the econometric sense, they help to

detect cases where the F-test is inaccurate and/or has low power (e.g., because the normal-

i.i.d. assumption is invalid, or when the inverse of the variance-covariance matrix is numerically

32Alternatively, one could also use the value-weighted market factor, as in Table 1, of course. In fact, Kan
and Zhang (1999, p.228) report that the labor income factor of Jagannathan and Wang (1996) is significantly
correlated with the market factor. They state that it is for that reason inappropriate to conclude that labor
income is a “useless” factor. However, the “ALL” portfolio better reflects that the Fama-MacBeth regression
(or the GRS-FAR test) equally weights the test assets.

33For example, for size, book-to-market ratio, and investment decile portfolios, the HML portfolio is long
in the five small portfolios, the five high book-to-market ratio portfolios, and the five low total assets growth
portfolios and short in the other 15 portfolios. The market portfolio is not included in any of the HML legs.
Sorting by the lagged characteristics is equivalent to the formation of the test asset portfolios and does not
require forward looking information. However, it is subject to a publication look-ahead bias (we predict stocks
before the predictability was discovered), which also applies to the selection of test assets and the multivariate
F-test.
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inaccurate when N is close to T). For example, if the multivariate rank tests do not indicate

sufficient factor betas, but the univariate tests do indicate sufficient factor betas, a researcher

might want to reduce N (or increase T) to elevate the power of the multivariate test.

On the other hand, if the multivariate rank tests indicate sufficient factor betas but the

univariate tests do not line up, it might indicate that just a few test assets drive the mul-

tivariate test result. Such a finding would suggest that the conclusions based on the Fama-

MacBeth/Shanken methodology are technically valid (the price of risk can be econometrically

identified), but that the estimate of the price of risk is not “robust” if some test assets are ex-

cluded from the analysis. A researcher can avoid such a pitfall by also reporting the individual

betas of all test assets. If the goal is to conduct robust inference, the multivariate rank test

should not be used as a substitute for an analysis of individual betas (or correlations).

3.4. Empirical Results Revisited

3.4.1. Baseline Results

Table 4 provides Fama-MacBeth estimates of the price of risk (λ) when the intercept is re-

stricted to zero.34 The Fama-MacBeth method is not generally well-behaved, even though it

is unlikely to over-reject in small samples. For this reason, I add bootstrap confidence inter-

vals (Burnside, 2011) as they do not over-reject “useless” factors in more general cases (see

Kroencke and Thimme, 2020). Finally, I report the GRS-FAR confidence intervals as proposed

by Kleibergen and Zhan (2020).

The point estimates for the price of risk (λ) are the same as in Kroencke (2017) and

Kleibergen and Zhan (2020). For reported consumption and the P-J measure, small t-statistics

indicate that consumption does not help to explain stock returns. The t-statistic is larger for

the Q4-Q4 measure, but the price of risk is not significantly different from zero at the 5%

significance level or when assessed based on the 95% bootstrap confidence interval.

For the garbage and unfiltered consumption, I find t-statistics for the price of risk (λ) above

34I report tests where the cross-sectional intercept is estimated in the Appendix.
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Table 4 Price of Risk Estimates: Estimation without Intercept

Description: The test assets are 31 portfolios in the short sample (ten size, value, and investment decile
portfolios, plus the market excess return) and 21 test assets in the full sample (size and value decile portfolios,
plus the market excess return). λ is the cross-sectional Fama-MacBeth estimate of the price of risk when the
cross-sectional intercept is restricted to zero

E
(
Re

i,t

)
= βC,i × λ.

t(λ)Sh is the Shanken (1992)-corrected t-statistic for the price of risk. Angle brackets report the 95% bootstrap
confidence interval for the price of risk, as in Burnside (2011). Brackets report the 95% confidence interval
for the price of risk according to the GRS-FAR test, as in Kleibergen and Zhan (2020). γ is the coefficient of

relative risk aversion implied by λ̂/var(△Ct). The bottom of the table reports number of significant individual
betas, the univariate rank robustness test t(βALL) and the multivariate rank test F (β = 0).

Interpretation: Short sample: according to the GRS-FAR test, no consumption measure has a significant price
of risk. However, the bootstrap confidence intervals indicate that garbage and unfiltered consumption have a
significant price of risk. Full sample: The GRS-FAR test and the bootstrap confidence interval suggest that
unfiltered consumption has a significant and positive price of risk. The full sample evidence is not shown in
Kleibergen and Zhan (2020).

The difference in the test outcomes in the small sample are in line with the power curves shown in Figure
5. The bootstrap approach and the GRS-FAR test do not over-reject “useless” factors. The Fama-MacBeth t-
statistics over-reject “useless” factors in large samples and not in small samples. Fama-MacBeth t-statistic and
the bootstrap approach are considerably more powerful than the GRS-FAR test in detecting “useful” factors.
Kleibergen and Zhan (2020) attribute the difference between Fama-MacBeth t-statistics and the GRS-FAR
test to an incorrect size of the textbook approach in the presence of a “useless” factor. Instead, the extended
results in this paper show that the difference in the two tests can be attributed to a low power of the GRS-FAR
test.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 and N=31 T=87 and N=21

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

λ 0.31 2.09 10.14 2.28 2.44 7.87 2.66

t(λ)Sh 0.57 2.51 1.05 1.87 2.59 1.00 3.32

Btrp c.i.95% <-4.8,4.9> <0.6,4.6> <-10.8,13.6> <-1.8,5.4> <0.9,5.4> <-9.2,9.3> <1.2,4.3>

GRS-FAR c.i.95% unbounded (-0.8,7.8) unbounded unbounded disjointed empty (0.9,5.5)

implied γ 17.64 25.25 97.75 104.84 35.95 164.24 16.26

# signif. positive 0 31 0 25 31 1 21

t(βALL), p-value 0.50 0.00 0.21 0.04 0.00 0.28 0.00

F (β = 0), p-value 0.27 0.01 0.53 0.27 0.21 0.00 0.00
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2.5, which indicates that consumption helps explain the mean excess returns of the considered

test assets.35 The estimated λs are also close to the reported values provided in Table 1. The

implied coefficients of relative risk aversion are discussed in Savov (2011) and Kroencke (2017)

but are not considered by Kleibergen and Zhan (2020). As can be seen, these coefficients are

larger than ten and thus indicate that the model can explain only a part of the mean excess

returns. The bootstrap confidence intervals do not include zero and corroborate the conclusion

based on the Fama-MacBeth/Shanken t-statistics.

As in Kleibergen and Zhan (2020), I also report the results for the GRS-FAR test and

show the 95% confidence set by searching for all possible λs that lead to rejection of the

GRS-test that all pricing errors are zero. At first glance, these results seem to contradict

the Fama-MacBeth/Shanken t-statistics. For example, the GRS-FAR test is unbounded (the

model is never rejected) for reported and unfiltered consumption, and the confidence interval

includes zero for garbage. From these results, Kleibergen and Zhan (2020) conclude that there

is no evidence that the alternative consumption measures can explain mean excess returns.36

However, this conclusion is not surprising, because the the GRS-FAR test has almost no power

to differentiate between“useless” and“useful” factors when the model is misspecified (as shown

in Figure 5).

At the bottom of the table are the relevant rank tests. Rejection of the multivariate rank

test means that the Fama-MacBeth t-statistics are trustworthy from an econometric point of

view and would not over-reject the H0: λ = 0 for a “useless” factor. Except for the garbage

measure, the alternative consumption factors do not pass the multivariate rank test. However,

the univariate rank robustness test draws a different picture. Garbage, Q4-Q4 and unfiltered

consumption come with significant betas in the shrunken cross-section. This finding is indica-

35My Fama-MacBeth/Shanken t-statistics differ substantially from Table III in Kleibergen and Zhan (2020).
They do not correct their “NW t-statistics” for the errors in variables problem. Their t-statistics are indeed
inflated, but the reason is a problem unrelated to the “useless” factor problem. This fact can be seen from the
function “FM nointercept.m” in the replication code of their paper.

36Kleibergen and Zhan (2020, p.547): “With such limited information in the data, we cannot conclude whether
the consumption growth factor explains part of the variation in the cross-section of expected asset returns, nor
can we reject the possibility that consumption growth explains all of the variation.”
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tive of a lack of power for the multivariate test.37 It is, therefore, reasonable to consider a

larger T and/or a smaller cross-section N.

3.4.2. Larger T

The garbage data are only available from 1960 onward. In contrast, reported and unfiltered

consumption is available for the full 1928-2014 sample (Kroencke, 2017). Despite the available

data, Kleibergen and Zhan (2020) do not study or mention the full sample in their analysis.38

However, studying the full sample of the same dataset is reasonable when low power is a

concern.

Compustat balance sheet information is not available for the full 1928-2014 sample, and

thus it is not possible to construct investment portfolios for the full sample. For that reason, the

cross-section is limited to size and value portfolios, plus the market factor and the cross-section

is reduced to N=21.39

Table 4 provides the full sample results to fill this gap. First, the multivariate rank tests

and the univariate rank robustness tests now come to very similar conclusions. For example,

both tests indicate significant betas for unfiltered consumption.40 I find that Fama-MacBeth t-

statistics, the bootstrap approach, and the GRS-FAR test allow one to conclude that unfiltered

consumption has a significant price of risk.

37I also conduct a multivariate test for the significance of the mean excess returns of the test assets. The
results are provided in the replication code and do not allow me to conclude that mean returns differ from
zero (p-value=0.39). An analogous univariate test is passed (p-value=0.00). The multivariate test is also not
powerful enough to detect a significant equity premium when N is close to T in the empirical data.

38Instead, they switch to a different dataset when analyzing larger T.
39These data come directly from Ken French’s website.
40The fact that even reported consumption passes the multivariate rank test in the full sample can be

attributed to a few test assets. All except one individual beta are insignificant. As mentioned before, the
multivariate rank test should not be used as a substitute for a more careful analysis of individual betas to
avoid the asset pricing test results being influenced by only a few test assets.
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3.4.3. Smaller N

In Table 5, I shrink the cross-section of test assets by considering the well-known “6 Fama-

French Portfolios” double-sorted by size and value. Notice that these are simply more rough

sorts of the size and value decile portfolios, or the popular “25 Fama-French Portfolios” (i.e., I

look at economically comparable test assets as before).41 42

In the short sample, I find that garbage and unfiltered consumption pass the multivariate

rank tests. The p-value for the Q4-Q4 and P-J measures are 0.07 and 0.09.43 Garbage and

unfiltered consumption are now priced factors according to the GRS-FAR test. The bootstrap

confidence intervals are narrower and allow one to conclude that the Q4-Q4 measure is also

priced.

In the full sample, a major drawback of the GRS-FAR test becomes visible when looking at

the results for unfiltered consumption. Factor correlation is now too strong and the GRS-test

is rejected at all regions of λ. Thus the confidence set of the GRS-FAR test is empty. Because

the precision of the pricing error estimates increases, the GRS-test correctly indicates that

no λ sets all pricing errors to exactly zero and the model is misspecified. That the model is

misspecified is very much expected. Therefore, such a result is not surprising. In this light,

the recommendation by Kleibergen and Zhan (2020) to only conduct the GRS-FAR test is

problematic because it must be expected that one finds an empty confidence interval for

misspecified models, which does not allow for any inference on the price of risk.

Finally, I highlight that the conclusions based on the Fama-MacBeth estimates, or bootstrap

confidence intervals, are consistent across the different specifications reported in Tables 4 and

41Fama and French (1996) use these six portfolios to construct their SMB and HML factors. It is well known
that the decile portfolios and the 25 Fama-French portfolios have a strong factor structure. For that reason,
explaining a larger or smaller cross-section of these portfolio sorts is a priori not more or less challenging for a
model (see Lewellen, Nagel, and Shanken, 2010, Daniel and Titman, 2012, Cochrane, 2011).

42Kleibergen and Zhan (2020) report in their Online Appendix C.3 results for six corner portfolios and
the market portfolio. By construction, this cross-section heavily weights the 10% of the smallest companies.
In addition, they report results (estimation with intercept) which are not in line with their table caption
(estimation without intercept). For example, in the case of unfiltered consumption, the correct results are a
p-value for the multivariate rank test of 0.00 and a bounded GRS-FAR c.i. of (1.1, 10.8).

43As mentioned before, Parker and Julliard (2005) analyze quarterly sampled three-year consumption and
not annual sampled data.
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5, as well as the preliminary analysis in Section 1 and the non-linear GMM-based tests reported

in Tables 2 and 3. If robustness is indeed a concern in these applications, one would expect

widely varying point estimates for the price of risk (and the coefficient of relative risk aversion)

across the different specifications. But this is not the case.

The test that provides widely different results across the different specifications is the

GRS-FAR test: the confidence intervals are unbounded, bounded, and empty.

Table 5 Price of Risk Estimates: Small Cross-Section

Description: The test assets are six portfolios sorted by value and size (from Ken French’s website), plus the
market excess return. The reported statistics are the same as in Table 4.

Interpretation: The small cross-section further mitigates concerns of low power. Garbage and unfiltered con-
sumption (short and full sample) pass the multivariate rank test. Results based on the univariate rank robust-
ness test now align in most cases. In the short sample, garbage and unfiltered consumption have a significant
price of risk according to the GRS-FAR test. In the full sample, the GRS-FAR confidence interval is empty
for unfiltered consumption. When comparing these results with the different specifications in the previous ta-
bles, I find that the Fama-MacBeth Shanken t-statistics and the bootstrap confidence intervals allow for very
similar conclusions across the different specifications. On the contrary, the GRS-FAR test offers unbounded,
bounded and empty confidence sets across the different specifications, which illustrates the poor power problem
in practice.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 and N=7 T=87 and N=7

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

λ 4.01 2.17 7.20 1.96 2.63 8.32 2.91

t(λ)Sh 1.35 2.44 1.46 2.06 2.79 1.02 3.63

Btrp c.i.95% <-4.5,5.8> <0.6,4.9> <-6.7,12.8> <0.4,5.2> <1.0,6.1> <-9.7,11.5> <1.5,4.7>

GRS-FAR c.i.95% disjointed (2.1,15.0) disjointed disjointed (3.6,6.6) disjointed empty

implied γ 230.19 26.16 69.37 90.46 38.79 173.67 17.76

# signif. positive 0 7 2 6 7 0 7

t(βALL), p-value 0.41 0.00 0.11 0.01 0.00 0.27 0.00

F (β = 0), p-value 0.60 0.01 0.09 0.07 0.00 0.10 0.00
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3.4.4. Fama-MacBeth Estimation With or Without an Intercept?

Estimation without intercept is a classic textbook recommendation by Cochrane (2005). A

researcher might hypothesize that a specific asset pricing model comes with a common pricing

error, and then it is reasonable to estimate the intercept (e.g., Parker and Julliard, 2005).

Reporting both specifications does no harm and helps draw the full picture. To save space

and facilitate the discussion, I provide the results with an intercept in the Appendix to this

paper. A simulation experiment in the Appendix shows that the Fama-MacBeth estimation

with an intercept comes with relative low power for all considered methods when the sample

size is small. The specification with an intercept requires the full sample period to allow for

meaningful inference or a stronger cross-sectional relationship in the short sample.

4. Conclusion

Kleibergen and Zhan (2020) argue that the textbook methods are prone to an “over-rejection”

problem in small samples and propose new approaches to test consumption-based asset pricing

models.

I show that the GMM-rank test and the GMM-AR tests, as implemented in Kleibergen and

Zhan (2020), are plagued by the “GMM trap” problem and do not allow for the detection of

“useful” factors. The problem is numerical and not a problem of the method itself. When using

a single moment condition (e.g., the market excess return), I offer simple remedies that make

the method work. However, the modified GMM-rank and GMM-AR tests still have relatively

low power.

When testing the linearized version of the model and a large cross-section of test assets, I

show that the Fama-MacBeth/Shanken method actually under-rejects“useless” factors in small

samples (in line with Kan and Zhang, 1999) and does not over-reject them. The GRS-FAR test

proposed by Kleibergen and Zhan (2020) works well when the asset pricing model is correctly

specified. However, when the asset pricing model is misspecified, the GRS-FAR test is not
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expected to be able to provide inference on the price of risk. The simple consumption-based

model is an imperfect model at best and should be considered a misspecified model.

Bootstrap confidence intervals are an easy-to-implement alternative method. They do not

over-reject “useless” factors and are powerful in detecting “useful” factors in non-linear and lin-

ear specifications of the consumption-based asset pricing model. They even allow for inference

when the model is misspecified.
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Additional Analysis for GMM Estimation

Figure A.1. The Power of GMM-rank Tests: T=200
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GMM-rank Tests, T=200 and N=1

 useless factor

reported P-J Q4-Q4 unfiltered garbage

GMM-rank test, as in Kleibergen and Zhan (2020)

GMM-rank test, this paper

Simple test of the correlation coefficient

Description: This figure complements Figure 1. T is increased to 200 years in the simulation.

Interpretation: The GMM-rank test has no power to detect“useful” factors even in large samples. The corrected
version and testing directly the factor correlation become more powerful tests when T is large.
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Figure A.2. The Power of GMM-based Inference on the Coefficient of Relative Risk Aversion:
T=200
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 useless factor

reported P-J Q4-Q4 unfiltered garbage

GMM-AR test, as in Kleibergen and Zhan (2020)

GMM asymptotic, textbook

GMM bootstrap c.i., this paper

Description: This figure complements Figure 3. T is increased to 200 years in the simulation.

Interpretation: The GMM-AR test has no power to detect “useful” factors in large samples. GMM-based
standard errors over-reject “useless” factors but are more powerful in detecting “useful” factors. Bootstrap
confidence intervals do not over-reject “useless” factors and are at the same time powerful in detecting “useful”
factors.
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Analysis of Alternative Power Curves for the Fama-MacBeth

Method

Kleibergen and Zhan (2020) provide power curves to“briefly illustrate the malfunction” (p.524)
of the Fama-MacBeth method (their Figures 3 and 4). These power curves show the probability
to reject the true hypothesis λ = 2 at various hypothetical values. A test with a correct size
should reject with a probability of 5% at λ = 2 and ideally 100% of the time at all other values.
Whenever testing the power of a test, however, the assumed alternative matters. Kleibergen
and Zhan (2020) assume the following data generating process:

Re
t,i = λ0 + βC,i(λ+ f̄t) + et,i

where f̄t is the de-meaned risk factor, et,i is the idiosyncratic risk, and λ varies between -1
and 5 across the alternatives. They then check the probability of the Fama-MacBeth t-test, or
the simple GRS-test, to reject λ = 2. Surprisingly, they do not report the GRS-FAR test, even
though this is claimed in the caption to the according figure.

In economic terms, this data generating process has the feature that the asset pricing model
is assumed to be correctly specified. The pricing errors (in excess of λ0) are always zero at one
particular value λ.

It is important to think about in which kind of situations this is a relevant case. First, a
researcher has to believe that the consumption-based model is literally true (except for λ0)
and is concerned about finding the correct price of risk, λ. But in this setting, the risk factor
will always be equally correlated with the returns for all tested λs. Even when λ = 0. For the
chosen data generating process, it is easy to verify that Corr(Re

t,i, f̄t) is independent of λ. For
all tested alternative hypotheses, the population correlation with the test assets is identical.
In the case of the alternative consumption measures, this correlation is about 40% and more
for the market excess return.

Second, by changing λ, we also change the mean returns of the test assets (R̄e
t = λ0+βC,iλ).

For negative values of λ, the test asset excess returns (in excess of the common pricing error,
λ0) will be negative.44 They will be around zero for λ = 0. They will be about 2.5 times as
large (!) as in the empirical data for λ = 5. These are hypothetical test assets that are not
encountered in applied research. While potentially interesting from an econometric perspective,
they are mainly irrelevant scenarios from the view of applied research. The test assets are (to
a large extend) given and we want to know how risk factors with different strength compare,
and not the other way around.

I replicate their power curve (red dotted) in Figure A.3 for the 31 test assets and unfiltered
consumption.45 In their according Figure 4 (“Power curves of the GRS-FAR Test”), they only
show the power curve of the GRS-test, assuming that λ = 2 is known to the researcher.46 I

44Which would violate the consumption-based asset pricing model and the standard assumption of risk-averse
investors (Campbell, 2017).

45These are ten decile portfolios sorted by size, book-to-market ratio, and investment plus the market port-
folio.

46See their replication code, replication sim.m, lines 83-174. The actual GRS-FAR test has an additional
layer of uncertainty, as it accounts for the fact that λ is unknown to the researcher. The GRS-FAR test is likely
to come with less power, as it frequently generates unbounded/disjointed confidence sets and is inconclusive.
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complement these earlier results by adding the actual GRS-FAR test to the picture (red solid).
Even more importantly, Kleibergen and Zhan (2020) do only show results when the factor
explains the mean returns perfectly (left sub-figure). But this case is empirically irrelevant.
Therefore, I add a sub-figure to the right that imposes the empirical pricing errors in the
population. In this scenario, I find that the GRS-FAR test will usually not reject the null
λ = 2, the power curve is mainly flat.

One can observe a hump in the power curve around around λ = 0. The reason is that the
data generating process changes the mean returns of the test assets. Around λ = 0, there is not
much mean return left to explain, and as a result the alphas in the GRS-test are tiny and often
insignificant. But such test assets do not exist in applied research; or they are avoided, as there
would be literally nothing to explain in the first place. Put differently, this data generating
process does not capture a situation that can be expected to be found in applied research.

Turning to the Fama-MacBeth/Shanken t-statistics, the black dotted line shows rejection
frequencies of the H0: λ = 2 when estimation is with an intercept. These are the results
that are reported by Kleibergen and Zhan (2020). The solid black line shows the according
rejection frequencies when estimation is without the intercept; these results are not reported
by Kleibergen and Zhan (2020). I also notice that Kleibergen and Zhan (2020) restrict in their
figures the displayed area of λ to the range -1 to +5. The restriction on the displayed parameter
space changes the interpretation of the figure. While the figure shown in Kleibergen and Zhan
(2020) indicates a flat power curve, the power curve is actually sharply increasing just outside
the reported area on the right. In addition, when the intercept is not estimated, the power
curve is even similar to the GRS-FAR test. When the model is misspecified (right sub-figure),
the FMB/Shanken t-statistics remain useful for statistical inference while the GRS-FAR test
is clearly not useful for inference on λ. To the best of my judgment, I am not able to see an
obvious “malfunction” of the Fama-MacBeth/Shanken approach in this setting.
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Figure A.3. FMB-Shanken and GRS-FAR Power Curves with Varying the Test Assets
(Lambda): T=55
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Description: This figure replicates and extents the power curves reported in Kleibergen and Zhan (2020),
Figures 3 and 4. It shows the Monte Carlo simulation-based rejection probability of the H0: λ = 2 for a
consumption factor that prices the assets without a pricing error (left sub-figure,Z) or with pricing error (right
sub-figure). Results are based on 10,000 draws of multivariate normally distributed data calibrated to the 31
test assets and unfiltered consumption (described in the caption of Table 4), with T=55 and N=31. Red dotted
is the GRS-test, reported as GRS-FAR test in Kleibergen and Zhan (2020). Red is the actual GRS-FAR test.
Black (dotted) shows the rejection frequency of the Fama-MacBeth t-statistics with the Shanken correction
(when estimation is with an intercept). When moving along the x-axis, the test asset mean returns change
according to the equation, R̄e

t,i = λ0 + βC,iλ, while the consumption betas remain the same.

Kleibergen and Zhan (2020) restrict their analysis to the case when the factor has no pricing errors (left
sub-figure) and only show the area between the two green lines.

Interpretation: The Fama-MacBeth/Shanken approach with estimating the intercept leads to sharply increasing
power curves just outside the area shown in Kleibergen and Zhan (2020). When the estimation is without the
intercept, the power curve is comparable to the GRS-FAR test. Kleibergen and Zhan (2020) do not provide
evidence of a “malfunction” of the Fama-MacBeth/Shanken method. Importantly, the GRS-FAR test cannot
provide inference on the price of risk in the empirical relevant case when the risk factor comes with pricing
errors (right sub-figure).
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Fama-MacBeth Estimation without Intercept

Figure A.4. FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas):
Misspecified Model, T=200
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Price of Risk : Estimation without Intercept, T=200 and N=31

 useless factor true factor 

GRS-FAR, KZ2020

FMB/Shanken, textbook

bootstrap c.i.

Description: This figure complements Figure 5 and increases T to 200 years.

Interpretation: The Fama-MacBeth/Shanken approach slightly over-rejects “useless” factors in large samples.
The bootstrap confidence intervals do not over-reject “useless” factors in large samples.

55



Fama-MacBeth Estimation with Intercept

Additional Simulation Results

Figure A.5. FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas):
Misspecified Model, Estimation with Intercept, T=55
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Price of Risk : Estimation with Intercept, T=55 and N=31

 useless factor true factor 

GRS-FAR, KZ2020

FMB/Shanken, textbook

bootstrap c.i.

Description: This figure complements Figure 5 and also estimates the intercept.

Interpretation: All of the considered methods have low power in small samples. Increasing T or reducing N is
advisable to get more powerful tests.
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Figure A.6. FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas):
Misspecified Model, Estimation with Intercept, T=200
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Price of Risk : Estimation with Intercept, T=200 and N=31

 useless factor true factor 

GRS-FAR, KZ2020

FMB/Shanken, textbook

bootstrap c.i.

Description: This figure complements Figure A.5 and increases T to 200 years.

Interpretation: The over-rejection problem of FMB/Shanken standard errors becomes a concern in large sam-
ples. The bootstrap confidence intervals do not over-reject “useless” factors in large samples.
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Additional Empirical Results

Table A.1 Price of Risk Estimates: Estimation with Intercept

Description: This table complements Table 4 in the main paper and provides results for estimation with an
intercept λ0.

Interpretation: When estimation is with an intercept, the Fama-MacBeth/Shanken as well es bootstrap confi-
dence intervals do not indicate a significant price of risk at the 5% level for any of the alternative consumption
measures. This result is in line with the lack of power of this specification, as indicated in Figure A.5.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 and N=31 T=87 and N=21

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

const 7.40 1.24 4.57 0.94 1.27 9.56 -0.30

t(const)Sh 3.14 0.28 1.19 0.21 0.36 3.72 -0.08

Btrp c.i.95% <-0.1,11.8> <-6.5,13.0> <-2.2,11.7> <-4.7,11.5> <-3.4,9.1> <1.0,14.0> <-7.0,6.3>

λ 0.37 1.71 4.42 2.00 2.04 0.02 2.74

t(λ)Sh 0.70 1.05 1.83 1.81 1.75 0.04 2.10

Btrp c.i.95% <-1.1,1.7> <-2.1,4.2> <-1.3,5.2> <-0.6,2.3> <-0.4,3.1> <-2.9,2.6> <0.7,4.6>

GRS-FAR c.i.95% unbounded unbounded unbounded unbounded unbounded (-0.6,1.2) (-0.1,5.0)

implied γ 21.48 20.69 42.56 92.16 30.06 0.34 16.75

t(βHML), p-value 0.23 0.30 0.09 0.10 0.05 0.30 0.00

F (βi = βj), p-value 0.26 0.47 0.49 0.53 0.37 0.00 0.00
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Table A.2 Price of Risk Estimates: Estimation with Intercept, Small Cross-Section

Description: This table complements Table 5 in the main paper and provides results for estimation with an
intercept λ0.

Interpretation: P-J, Q4-Q4, and unfiltered consumption are significantly priced according to bootstrap con-
fidence intervals even in the short sample, when testing with an intercept is likely to become more powerful
than with N=31/N=21.

Short Sample (1960-2014) Full Sample (1928-2014)

T=55 and N=7 T=87 and N=7

Reported Garbage P-J Q4-Q4 Unfiltered Reported Unfiltered

Dec. Dec. Dec. Dec. T.A. Dec. T.A.

const 6.98 7.29 3.24 -1.33 -2.73 7.10 -3.50

t(const)Sh 1.87 1.67 0.72 -0.23 -0.61 1.60 -0.73

Btrp c.i.95% <-6.3,14.7> <-7.6,23.0> <-7.9,12.3> <-15.8,11.0> <-6.9,11.9> <-4.1,14.4> <-11.8,7.7>

λ 1.41 0.07 4.57 2.28 3.64 2.58 4.03

t(λ)Sh 1.57 0.05 2.10 1.92 2.18 1.63 2.21

Btrp c.i.95% <-1.2,3.6> <-5.1,4.8> <0.7,7.9> <0.1,4.3> <-2.2,4.8> <-3.0,4.9> <0.2,6.2>

GRS-FAR c.i.95% disjointed disjointed disjointed disjointed (2.3,5.7) disjointed empty

implied γ 80.98 0.85 44.03 104.93 53.59 53.90 24.62

t(βHML), p-value 0.01 0.88 0.00 0.02 0.20 0.11 0.09

F (βi = βj), p-value 0.49 0.49 0.06 0.22 0.00 0.28 0.00
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