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Abstract 

 
Alpha depends on the return measurement horizon, particularly as the horizon becomes long.  We 

introduce a procedure to estimate long-horizon alphas from short-horizon returns.  Among those sample 

mutual funds with positive alphas estimated from monthly returns, nearly half have negative alpha 

estimates when returns are measured at the ten-year horizon.  Among sample funds with positive monthly 

alpha estimates and monthly beta estimates that exceed one, over 70% have negative alpha estimates at 

the decade horizon.  Alphas estimated from short-horizon returns can be uninformative or misleading 

regarding fund performance for both active and passive investors over longer horizons.     
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Investors select portfolio weights and researchers test asset pricing models relying on estimates of 

the parameters that describe the probability distributions of returns, including means, variances, 

covariances, as well as “beta” and “alpha” coefficients.  The literature described below has taken note that 

these parameters depend on the horizon over which returns are measured.  However, the focus to date has 

been on relatively short horizons ranging from daily to annual, where the effects are modest.  For 

example, Lewellen and Nagel (2006) acknowledge that betas depend on return measurement horizon 

under the heading “microstructure effects” and dismiss the effect of horizon on beta as “tiny.”   

We show that it is a mistake to view the effects of return measurement horizon as unimportant 

when considering outcomes to those who invest over long horizons.  We focus in particular on the fact 

that alphas, both parameters and estimates thereof, differ quite notably when returns are measured over 

long vs. short horizons.  Our application is to measures of mutual fund performance and we consider 

horizons of up to ten years.  Of course, parallel issues arise in the assessment of any type of investment 

performance, including returns to hedge funds, pension funds, endowments and trusts, and individual 

investors.  We show that alphas estimated from short-horizon returns can be uninformative or misleading 

regarding performance for investors with longer horizons.   Importantly, the issues we highlight pertain to 

all who invest over long horizons, including those who periodically rebalance or otherwise trade actively, 

not just those who hold fixed positions over long periods.              

The literature that reports on measures of investment performance mainly studies returns assessed 

over relatively short time horizons, often monthly.  Investors who are interested in parameter estimates 

that pertain to the distribution of monthly returns on various securities, portfolios, and funds can consider 

the results of hundreds of published studies.   Yet, a much smaller literature that includes Levhari and 

Levy (1977), Handa, Kothari and Wasley (1989), Longstaff (1989), and Lee, Wu and Wei (1990) has 

shown mathematically and empirically that the parameters that describe the distribution of returns not 

only depend on the horizon over which returns are measured, but in complex, non-linear ways.1  This 

 
1 In contrast to simple returns, some parameters of the distribution of logarithmic returns (e.g. mean and variance) 

are proportionate to horizon if return distributions are independent and identical over time.  Since the simple return 
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literature has largely focused on CAPM-related tests and as noted relatively short horizons that range 

from daily to annual, where the effects of horizon are modest.2  We focus attention on the fact that alphas 

as well as betas depend on return measurement horizon and show that the effects become large when 

horizons are long.      

Jensen (1968) introduced and explicitly motivated alpha based on the CAPM of Sharpe (1964) 

and Lintner (1965).  The CAPM is a single-period model of unspecified length.   Of course, researchers 

have since adapted alpha to multifactor models.  More recent factor models, such as the five-factor model 

of Fama and French (2015), the Q-factor model of Hou, Xue, and Zhang (2015) and the four-factor model 

of Carhart (1997), are motivated in part based on their ability to explain aspects of the empirical 

distribution of monthly returns, but without explicit consideration of whether the monthly horizon is the 

most relevant or informative.    

 Importantly, our emphasis is not on forecasting (e.g. the degree to which returns measured from a 

short sample period are informative about returns measured over a subsequent period), learning (e.g. the 

Bayesian updating of parameter estimates as the sample becomes larger with the passage of time), or 

changes in parameters as the economy evolves (as in conditional asset pricing models).  Rather, we focus 

directly on the effects of altering the time interval over which returns are measured, e.g. from monthly to 

annual to decadal.  Our theoretical analysis focuses on a known stable probability distribution, while our 

empirical analyses in all cases rely on the identical 30-year sample.  Even though each long-horizon 

return is simply obtained by compounding the relevant shorter-horizon returns within the same sample, 

 
over multiple periods is obtained by the nonlinear (exponential) transformation of the sum of the log returns, the 

proportional-to-time property for means and variances in log returns does not carry over to simple returns. 
2  Kothari, Shanken, and Sloan (1995) estimate a positive return premium associated with CAPM betas when returns 

are measured at the annual horizon, but not at the monthly horizon.  Handa, Kothari and Wasley (1989) show that 

the estimated return premium associated with firm size is sensitive to the length of return interval used to estimate 

beta. Gilbert, Hrdlicka, Kalodimos, and Siegel (2014) estimate alphas and betas for equity portfolios over horizons 

ranging from daily to quarterly, and argue that differences across horizon are explained by differences in firms’ 

opacity, i.e., in investors difficulty in assessing the value implications of events.   Boguth, Carlson, Fisher and 

Simutin (2016) focus on slow information diffusion as an explanation for differing equity portfolio returns for 

horizons ranging from daily to annual.  Kamara, Korajczyk, Lou, and Sadka (2016) also focus on heterogeneous 

stock price reactions and assess the extent to which systematic factors earn risk premia at horizons from monthly to 

biannual.  We focus on returns measured over longer horizons where these frictions are less important, and highlight 

the effect of horizon per se. 
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we show that performance measures constructed from long-horizon returns contain notably different 

information than measures constructed from monthly returns.    

 The estimation of fund alphas and betas when returns are measured over longer horizons presents 

substantive challenges.  The available databases are too short to allow estimation of long-return-horizon 

alphas and betas by means of standard time series regressions.  Parameter estimates obtained from short 

horizon returns can be used in the formulas we develop that express long-horizon parameters as a function 

of short-horizon parameters, but since these functions are non-linear the resulting long-horizon parameter 

estimates will be biased due to Jensen’s inequality.  We rely on simulations calibrated to the actual data 

on a fund-by-fund basis to quantify and correct these biases.   

Having done so, we illustrate the practical importance of return horizon in measuring 

performance.  For the full sample, 30.4% of alphas estimated for decade-horizon returns are positive, 

compared to 43.2% of alphas estimated from monthly returns.  Among those mutual funds with a monthly 

return beta estimate less than one, the percentage of funds with positive decade-horizon alphas increases 

to 54.6%, while, strikingly, among funds with a monthly return beta estimate greater than one the 

percentage of funds with positive decade-return horizon alphas decreases to 14.5%.   

 These results imply that a given fund’s risk-adjusted performance, i.e., its alpha, can be positive 

over short return measurement horizons and negative over long return measurement horizons (or vice 

versa), even when results are based on a single sample.  To understand this potentially counterintuitive 

result, recognize that an alpha estimate is simply a mean return less the portion of that mean attributed to 

outcomes on “factors” (such as the overall market), i.e., on the product of estimated betas and mean factor 

outcomes.  Since betas depend on return measurement horizon, so does the partition of a mean return 

between factor outcome and alpha.    

But why does beta depend on return horizon?   To gain intuition for this fact it is useful to 

consider the details of return compounding.  If the expected return for the first period is positive then the 

investment at the beginning of the second period will be larger on average than at the beginning of the 

first.  As a consequence, any given percentage return during the second period has a larger average effect 
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on investment value as compared to the same percentage return during the first period, and deviations of 

individual outcomes from the mean outcome, which are the building blocks of parameters such as 

variances and covariances, are also larger relative to the initial investment during the second period.  

Compound returns computed over two periods capture this reality, while successive single-period returns 

do not.   

The importance of this distinction depends on the average magnitude of the earlier returns, with 

the effects being relatively larger for high alpha securities and for high beta securities if prior market 

returns are large, other things equal.  Consequently, market betas diverge in the cross-section from their 

average (of one) as the compounding horizon becomes longer.  The upshot is that an investor with a short 

return horizon can experience a positive alpha even while a long-horizon investor experiences a negative 

alpha (or vice versa), because the long-horizon investor can be subject to more (or less) beta risk as 

compared to the short-horizon investor.   

It has been suggested to us by a prominent Finance researcher that the results we report in this 

paper show that alpha is a “terrible statistic” for long-horizon investors, in part because it was originally 

introduced with reference to the mean-variance CAPM.  Among other shortcomings, alpha does not 

consider the strong positive skewness in the distribution of long horizon returns, as emphasized by Farago 

and Hjalmarsson (2023) and Bessembinder, Cooper, and Zhang (2023), as well as others.  Yet, many 

investors are interested in investment outcomes over long horizons, and until superior measures emerge 

will likely continue to focus on alpha as a measure of mean returns after allowing for systematic risk 

exposures.  Our results imply that the degree to which mean returns are abnormal cannot be evaluated 

independent of information regarding the horizons that matter to disparate investors.   Measures of mutual 

fund performance that are based on short-horizon returns may be uninformative or even misleading 

regarding fund performance for those investors who are focused on longer horizons.   

Our goal in this paper is to demonstrate the importance of return measurement horizon for 

estimates of investment alpha.  We rely on a simple single-factor market model because our focus is on 

the effects of the compounding of random returns over long horizons, not on the widely studied question 
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of which benchmarks or factor models are most appropriate.  Our results suggest the desirability of 

reporting alpha estimates for returns measured over a variety of horizons, but do not answer the intriguing 

question of which return measurement horizon is most relevant to investors.  Some relevant evidence 

might be obtained by assessing the return measurement horizon that best explains relations between 

mutual fund performance and fund flows originating with various types of investors.  Additional evidence 

might be provided by assessing the return measurement horizon for which various asset pricing models 

perform best.    

 

1. Investment Horizon and the Role of Rebalancing    

The familiarity that stems from the many empirical studies conducted in monthly returns might 

lead to a natural tendency to think of the monthly horizon as the “correct” one.  Yet, we know of no 

theory with the implication that the CAPM or other factor models should hold at the monthly horizon in 

particular, or that would support the reasoning that the one-month horizon is necessarily the most relevant 

to disparate investors.   

For longer term investors to focus only on the distribution of returns over the upcoming month 

would be myopic.3  Yet, Samuelson (1969) shows that rational long-horizon investors do, under certain 

assumptions, behave myopically.4  Specifically, he shows that if returns are independent and identically 

distributed (iid) over time, then an investor who maximizes the expectation of a power utility function 

rebalances each period to the same portfolio weights that are optimal for a single-period investor.  That is, 

 
3 Relatively little research provides direct empirical evidence regarding investment horizons.  Among the available 

studies, Ameriks and Zeldes (2004) report that nearly half of the participants in a sample of defined contribution 

retirement plans made no changes to their allocations or investments over a ten-year period.  A 2020 report issued 

by the Vanguard Group (Vanguard, 2020) indicates that nearly half of the accounts associated with affluent 

households made no trades at all during each calendar year from 2015 to 2019, and that among those accounts that 

did trade, only about eight to ten percent of existing positions were turned over.  Smith (2015), using demographic 

data, estimates that the investment horizon of the marginal individual investor exceeds fifteen years.     
4 While the word “myopic” does not appear in Samuelson’s study, the literature (e.g. Campbell and Viceira, 1999) 

has adopted it to describe outcomes in Samuelson’s setting.   
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under these assumptions, the information contained in compound multi-period returns is of no interest to 

an investor who already knows the parameters of returns over the shorter horizon at which they rebalance.   

It is, however, an important point of perspective that Samuelson’s myopic investor prescription 

cannot apply to all investors or to the market as a whole.  Since relative security prices change each 

period, the weight of each security in the market portfolio changes as well.  The market as a whole is, but 

for the effects of issuers’ primary transactions, a buy-and-hold portfolio, not a rebalanced portfolio.5  If 

some investors sell assets that have outperformed and purchase those that have underperformed to return 

to prior weights, then other investors must trade in the opposite direction.  The upshot is that, while it can 

be rational under specific assumptions regarding objectives (power utility) and the distribution of returns 

(iid) for some investors to follow myopic investment rules guided by single-period parameters, the 

parameters of compound long-horizon returns will be relevant to other investors and to those who invest 

in the market as a whole.6    

Our analysis of return horizon and alpha is relevant to both buy-and-hold and active investors.  In 

fact, the expressions we develop apply directly to a portfolio that is rebalanced each period.  Consider the 

following example.  Assume that monthly returns are iid, that the risk-free interest rate is zero, and that 

the mean continuously compounded market return is 10% per year with a continuously compounded 

standard deviation of 20% per year.  Consider two securities: the first has an instantaneous market beta 

equal to 0.9 while the second has an instantaneous market beta of 1.4, and each has an instantaneous 

alpha equal to zero.  Consider also an initially equal-weighted portfolio of these two securities, which has 

 
5 To avoid this issue would require the counterfactual assumption that firms issue or repurchase shares every period 

to offset relative price changes.   
6 While the theory of myopic portfolio rebalancing was influential, a large literature has studied long-horizon 

investors and asset pricing in settings where myopic behavior is not optimal.  Merton (1973) allows for economic 

state variables that affect parameters of the investment opportunity set, and shows how investors’ desire to hedge 

against changes in such state variables affects equilibrium pricing.  Campbell and Viceira (1999) and Barberis 

(2000), among others, consider the effect of allowing for time varying risk premia, and Campbell and Viceira (2002) 

describe many of the related studies.  Cochrane (2022) and Cochrane (2014) emphasize the importance to long-

horizon investors of the stream of inflation-adjusted cash flows produced by their portfolios.  Such investors are 

concerned with changes in the long run dividend stream itself, not in the discount rate variations that Cochrane 

(2011) shows are the main determinants of changes in market values, and would not necessarily rebalance in 

response to changes in market values induced by changes in discount rates.   
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zero instantaneous alpha and a continuous beta of 1.15 (the average of the component alphas and betas).  

Applying the expressions in Section 4 of this paper reveals that, if there is no additional trading (that is, 

the portfolio is buy-and-hold), the decade-horizon portfolio beta is 1.54 and the decade-horizon alpha is   

-38.39% (or -4.73% annualized).  On the other hand, if the portfolio is actively rebalanced to maintain 

equal weights, the decade horizon beta is 1.38 and the decade horizon alpha is -21.26% (or -2.36% 

annualized).   

That is, while rebalancing alters the effects of compounding, the decadal portfolio beta is greater 

than the instantaneous beta and the decadal portfolio alpha is negative even though the instantaneous 

alpha is zero, with or without rebalancing.  Further, the effects at the decade horizon are economically 

large.  Parallel conclusions apply to other active trading strategies.   The issues highlighted in this paper 

arise from the compounding of successive random returns and are relevant to any investment strategy that 

involves risky returns realized across multiple periods.  In contrast, short return horizon parameters are 

the sole object of interest only for those investors who are myopic (as in Samuelson, 1969), or for those 

who invest for a single short period before permanently exiting the market.     

 

2. Return Measurement Horizon and Alpha 

Jensen (1968) introduced alpha as a measure of mutual fund performance, motivating it as a 

“direct application” of the asset pricing model now broadly referred to as the CAPM.  The CAPM is a 

single-period model, but the length of the period is unspecified.  In practice, investment and decision 

horizons can differ across investors, a fact not explicitly considered by the CAPM.  Nevertheless, 

investors are interested in assessing fund performance after allowing for exposure to systematic risk, and 

researchers are interested in testing asset pricing models.  Alpha estimates are central to each exercise.    

Of course, researchers have adapted the concept of alpha to multi-factor models.   Our intent here 

is to focus attention on the fact that measures of investment performance depend on return horizon in the 

simplest possible settings, so we follow Pastor and Stambaugh (2012) in focusing on the single-market-

factor model.  Despite the single factor model’s simplicity, there is evidence it is of substantial relevance 
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to investors.  Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) present evidence 

that the single factor model better explains investor flows into and out of mutual funds as compared to 

multi-factor models (though this conclusion has been challenged, e.g., by Ben-David, Li, Rossi, and Song 

(2022)).   

 To assess how mutual fund alphas depend on the horizon over which returns are measured, we 

must accommodate the fact, previously noted by Levhari and Levy (1977), Handa, Kothari and Wasley 

(1989), and Longstaff (1989) among others, that beta coefficients depend on the horizon over which 

returns are measured.  We highlight that alphas also depend on the return measurement horizon, and in 

complex ways.  Apart from Levy and Levy (2011), this fact does not appear to have been emphasized in 

the literature.7  It is an important point of perspective that alphas and betas as parameters vary as a 

function of return measurement horizon, even in the absence of estimation challenges.   

We first demonstrate the theoretical relation between short-return-horizon and long-return-

horizon alphas.  We then describe our empirical methods to estimate long-return-horizon alphas and betas 

for the funds in the sample.  Finally, we describe the empirical evidence regarding long-return-horizon 

alphas for US equity mutual funds.   

2.1 Return Horizon, Beta and Alpha  

In this section, we demonstrate relations between short-return-horizon and long-return-horizon 

alphas and betas in the simplest possible setting: the short horizon is instantaneous, there is only a single 

relevant factor (the market return), and returns are iid over time.8  Let i denote an individual fund or asset 

and m denote the market, and let 𝜇𝑖 and 𝜇𝑚 denote their respective mean instantaneous returns, stated on 

a per-period (e.g. monthly) basis.  We assume for expositional simplicity that the risk-free interest rate is 

zero.  Let 𝜎𝑚
2  denote the variance of instantaneous market returns and let 𝛽𝑖 denote asset i’s instantaneous 

market beta.  Then the instantaneous alpha is 

 
7 Levy and Levy (2011) note that if the CAPM holds (i.e. implies zero alphas) for a horizon longer than that used to 

measure returns, then positive alpha estimates are induced for small firms, due to their high betas.  They do not, 

however, develop an expression for true alpha as a function of return horizon.   
8 We thank John Cochrane for specific modeling suggestions employed in this analysis.   
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 𝛼𝑖 = 𝜇𝑖 − 𝛽𝑖𝜇𝑚.                                                                                                                   (1) 

 Let a superscript L denote long-horizon (e.g. decade) returns, which are instantaneous returns 

compounded over the relevant period.  Let 𝜎𝑚
2𝐿  denote the variance of long-return-horizon market returns, 

𝜎𝑖𝑚
𝐿  the covariance of between long-horizon asset i returns and long-horizon market returns, and 𝛽𝑖

𝐿 =
𝜎𝑖𝑚
𝐿

𝜎𝑚
2𝐿  

denote asset i’s long-return-horizon market beta.  The alpha for long-horizon returns is:  

𝛼𝑖
𝐿 = 𝜇𝑖

𝐿 − 𝛽𝑖
𝐿𝜇𝑚
𝐿 .                                                                                                                       (2)                                                                                                               

 Expressions (1) and (2) are identical definitions of alpha, differing only in the horizon over which 

returns are measured.   

If returns are iid, then compounding over T periods gives 𝜇𝑖
𝐿 = 𝑒𝜇𝑖𝑇 − 1 and 𝜇𝑚

𝐿 = 𝑒𝜇𝑚𝑇 − 1.  

Substituting into (2), the long-return-horizon alpha can be stated as:                                                                                               

 𝛼𝑖
𝐿 = 𝑒𝜇𝑖𝑇 − 1 − 𝛽𝑖

𝐿(𝑒𝜇𝑚𝑇 −  1).                                                                                                   (3)                                       

 If 𝜇𝑚 = 0 or 𝛽𝑖 = 𝛽𝑖
𝐿= 0 then, using expression (1), the long-return-horizon alpha is simply  

𝛼𝑖
𝐿 = 𝑒𝛼𝑖𝑇 − 1.  That is, in these cases the long-return-horizon alpha is the compounded equivalent of the 

instantaneous alpha.  More broadly this simple relation does not hold, and the long-horizon alpha differs 

from this benchmark as a function of beta and the mean market return, 𝜇𝑚.   

We show in Appendix A that the long-horizon market return variance, 𝜎𝑚
2𝐿 , and the covariance 

between the long-horizon market return and the long-horizon return to asset i, 𝜎𝑖𝑚
𝐿 , are:                                                                                                                                          

𝜎𝑚
2𝐿 = (𝑒𝜎𝑚

2 𝑇 − 1)(𝑒2𝜇𝑚𝑇)  and                                                                                                    (4) 

𝜎𝑖𝑚
𝐿 = (𝑒𝛽𝑖𝜎𝑚

2 𝑇 − 1)(𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇).                                                                                           (5) 

 The variance of a given asset’s return increases with the return measurement horizon, T.9  The 

long-horizon covariance between a pair of asset returns (in this case asset i and the market) depends on 

 
9 The point that the variance of compound returns increases with investment horizon has been underappreciated at 

times, potentially attributable to a focus on the variance of arithmetic mean returns or the imprecise use of the phrase 

“time diversification.”  Samuelson (1969, page 239) sought to put this confusion to rest when he referred to the 

“mistaken notion that multiplying the same kind of risk leads to cancelation rather than augmentation of risk.” 
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the return measurement horizon but need not grow at the same rate as the variance of either asset.  

Combining (4) and (5), the long-horizon beta is:  

𝛽𝑖
𝐿 =

(𝑒𝛽𝑖𝜎𝑚
2 𝑇−1)(𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇)  

(𝑒𝜎𝑚
2 𝑇−1)(𝑒2𝜇𝑚𝑇)   

 .                                                                                                (6) 

It can be verified that (6) implies that instantaneous and long-horizon betas are equal if 𝛼𝑖 = 0 and 𝛽𝑖 = 1, 

or if 𝛽𝑖 = 0.10  

 To illustrate the implications of expression (6), Panel A of Figure 1 displays long-horizon (one 

year, five year, and ten year) asset i betas that are implied by various combinations of instantaneous betas 

and alphas.11  As noted, the long-horizon beta is equal to the instantaneous beta when the short-horizon 

beta is one and the instantaneous alpha is zero.  Long-horizon betas increase in instantaneous betas (given 

a positive mean market excess return), but the effect is non-linear, being greatest when short-horizon 

betas are large.  This implies an asymmetric impact, whereby increases in the return measurement horizon 

have the greatest effect on betas, and by extension on alphas, when short-horizon betas are large.  The 

absolute divergence between instantaneous and long horizon betas increases with the return measurement 

horizon.  Note that the long-horizon betas also increase in short-horizon alphas.  For example, when 

instantaneous alpha is zero an instantaneous beta equal to one implies long horizon betas also equal to 

one, while a positive (negative) instantaneous alpha implies long horizon betas that exceed (are less than) 

one (and more so at longer horizons).      

 Combining expressions (3) and (6), long-return-horizon alpha depends on short-return-horizon 

(instantaneous) parameters according to:  

 𝛼𝑖
𝐿 = 𝑒(𝛼𝑖+𝛽𝑖𝜇𝑚)𝑇 − 1 ⏞          

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛

− [
(𝑒𝛽𝑖𝜎𝑚

2 𝑇−1)(𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇)  

(𝑒𝜎𝑚
2 𝑇−1)(𝑒2𝜇𝑚𝑇)   

]
⏞                

𝑏𝑒𝑡𝑎

(𝑒𝜇𝑚𝑇 −  1)⏞      
𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑒𝑚𝑖𝑢𝑚

.                            (7)          

 
10 A limitation of this analysis is that the asset return and the market return are simply specified as correlated 

variables, without explicitly considering that the asset is itself a component of the market.   However, this 

simplification is not of practical importance as long as the weighting on the asset in question is small.     
11 The illustration relies also on 𝜇𝑚 = .09 𝑎𝑛𝑑 𝜎𝑚 = .19, which are reasonable in light of historical annual 

outcomes for the U.S. market. 
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Panel B of Figure 1 displays long-return-horizon alphas implied by expression (7) for various 

combinations of instantaneous alphas and betas.  To facilitate comparisons across horizons, the Figure 

displays alphas that are annualized.  The most notable results that can be observed on Panel B of Figure 1 

are that zero short-return-horizon alpha does not generally imply zero long-return-horizon alpha, and that 

deviations from zero are greater for longer return measurement horizons.  Long- and short-return-horizon 

alphas are approximately equal (when each is stated on an annualized basis) if the short-return-horizon 

beta is one, but not otherwise.  For assets with instantaneous betas less than one the long-return-horizon 

alpha is greater than the short-return-horizon alpha, while for assets with instantaneous betas greater than 

one the long-horizon alpha is less than the short-horizon alpha.  That is, investors who are concerned with 

outcomes measured over short horizons will experience different alphas than investors who are concerned 

with outcomes over long horizons, even if returns are iid and in the absence of estimation issues.    

This analysis therefore implies that mutual fund performance cannot be evaluated independent of 

the question of which return horizon is most relevant to investors.  Estimated long-return-horizon alphas 

are more likely to be negative if short-return-horizon betas are greater than one, while estimated long-

return-horizon alphas are less likely to be negative if short-return-horizon betas are less than one, other 

things equal.   However, as discussed below, this outcome depends on the positive market return 

premium; a negative average market return would reverse these effects.  Further, the functions displayed 

in Figure 1 are non-linear.  That is, the effect of return horizon on alpha is asymmetric, and is most 

pronounced when short run betas are large.   

Expressions (6) and (7) apply to investments with iid returns.  The period-by-period returns to 

portfolios with fixed positions, i.e., buy-and-hold portfolios, are not iid, because weights change over 

time as a function of prior performance.  However, expressions (6) and (7) can be applied to individual 

securities, and relying on standard portfolio theory results, the long return horizon alpha and beta of a 

buy-and-hold portfolio can be obtained as the average (using initial weights) of the security-specific long-

horizon alphas and betas.  On the other hand, returns to portfolios that are rebalanced each period to 
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maintain constant weights are iid if the component returns are iid.  As a consequence, expressions (6) and 

(7) apply directly for such rebalanced portfolios.      

To gain intuition for why both alpha and beta depend on the return horizon it is useful to consider 

the details of return compounding.  Assume an initial investment of $1.   If the return for the first period is 

positive, then the investment at the beginning of the second period is larger than $1.  As a consequence, 

any given percentage return during the second period has a larger effect on investment value as compared 

to the same percentage return during the first period, and deviations of individual outcomes from the 

mean, which are the building blocks of parameters such as variances and covariances, are also larger 

(relative to the initial $1investment) during the second period.  Compound percentage returns computed 

over two periods capture this reality, while successive single period percentage returns do not.   

The discussion in the prior paragraph is predicated on a positive return during the earlier period.  

If the first period return were negative instead, then returns would be of less consequence during the 

second period than the first.  If mean returns are positive, then the second periods will be of greater 

importance on average.   Other things equal this effect will be stronger for firms with positive alphas or 

with larger betas (assuming a positive market premium).   However, in a given sample the mean return 

can be negative, in which case the effects are reversed.   Of course, expressions (6) and (7) are 

implemented in sample data, and the relation between short and long horizon alphas and betas for any 

given fund or asset will depend on estimated alphas, betas, and mean market returns during the relevant 

sample period.     

2.2 The Modified LL Method of Estimating Long-horizon Alphas and Betas   

 Short-horizon (e.g. monthly) betas are typically estimated by time series regressions, where the 

sample size is the number of months for which the requisite data is available.   Here, we seek to estimate 

betas for longer return horizons.  On average, funds are included in our sample for only 133 months 

(about 11 years), so time series regression methods cannot be implemented for most funds if the return 

measurement horizon is long.     
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 Expressions (1) to (6) are stated in terms of instantaneous parameters.   Since mutual fund return 

data is observable only over discrete horizons, we rely on a version of expression (6) that applies when 

returns are measured at the monthly horizon rather than the instantaneous horizon.  Letting 

𝛽𝑖, 𝜎𝑚
2 , 𝑢𝑖 𝑎𝑛𝑑 𝑢𝑚 now denote monthly rather than instantaneous parameters, Lehavi and Levi (1977) 

show that long horizon beta can be expressed based on monthly parameters as:  

𝛽𝑖
𝐿 =

(𝛽𝑖𝜎𝑚
2  +(1+𝜇𝑖)(1+𝜇𝑚))

𝑇
−(1+𝜇𝑖)

𝑇(1+𝜇𝑚)
𝑇

(𝜎𝑚
2 +(1+𝜇𝑚)

2)
𝑇
−(1+𝜇𝑚)

2𝑇
.                                                                       (6a) 

 

The challenge lies in estimating long horizon betas.   If these are in hand, long horizon alphas are 

estimated simply based on expression (2) and sample estimates of expected returns measured at the 

relevant horizon.  For example, the alpha estimate for returns measured at the decade horizon is the 

arithmetic mean decade-horizon fund return less the product of the decade-horizon beta estimate and the 

arithmetic mean of decade horizon market returns over the same sample interval.   

To estimate long horizon betas, we introduce the procedure described below, which relies on a 

combination of theory and simulations.  We anticipate that future researchers may refine this estimation 

procedure, in particular by relaxing our reliance on the assumption that returns are iid.  In the meantime, 

the results obtained here illustrate the importance of return measurement horizon to the assessment of 

fund performance and to the estimation of alphas.   We estimate annual betas for all funds with at least 

twelve monthly observations, five-year betas for all funds with at least sixty monthly observations, and 

decadal betas for all funds with at least 120 monthly observations.  

We rely on the following sequence of empirical steps. 

Step 1: Obtain monthly alpha and beta estimates.  We begin by estimating single factor alpha (�̂�𝑖) 

and beta (�̂�𝑖) for each sample fund using time series regressions of monthly excess fund returns on 

monthly excess SPY returns.   Following Welch (2021), we winsorize fund returns at -2 times and 4 times 

the same-month SPY return prior to estimating these regressions.    
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Step 2: Obtain estimates of the other parameters contained in expression (6a).   We next record 

fund-specific estimates of the mean excess fund monthly return as well as the mean and variance of the 

excess market monthly return during the same sample months.  Since some of these estimates are 

obtained from short samples, we winsorize these estimates at the 10th and 90th percentiles.   

Step 3: Obtain estimates of long-horizon betas using (6a).  We employ the sample estimates of 

monthly horizon parameters in expression (6a) to obtain corresponding estimates of long-horizon betas at 

the annual, 5-year, and decade horizons, which we denote as �̂�𝑖
𝐿 (i.e., �̂�𝑖

1𝑦
, �̂�𝑖

5𝑦
, and �̂�𝑖

10𝑦
).  Note, though 

that since expression (6a) is non-linear in its parameters, the resulting �̂�𝑖
𝐿 estimates are not only noisy, but 

are biased due to Jensen’s inequality.   Further, since the expression relies on several parameter estimates 

characterized by varying degrees of estimation error, no obvious prediction as to the direction of the bias 

arises.  The remaining steps describe how we quantify and adjust for such bias.    

Step 4: Create a simulated fund to match each sample fund and assign parameters to it.  For each 

fund in our sample, we create a matching simulated fund and assign to it a true monthly beta, 𝛽𝑖, as a 

random draw from a normal distribution with mean equal to the sample fund’s empirically estimated 

monthly beta and variance equal to the cross-sectional sample variance of monthly fund beta estimates 

obtained in Step 1.  We also assign to each fund a true monthly alpha, 𝛼𝑖, as a random draw from a 

normal distribution with mean equal to the matched sample fund’s alpha estimate and variance equal to 

the cross-sectional variance of sample monthly alphas across all funds obtained in Step 1.  Further, we 

assign 𝜇𝑚 and 𝜎𝑚
2  parameters to each simulated fund that match the sample estimates for each fund in 

Step 2.  Having done so, we use expression (6a) and the assigned short-term parameters to compute the 

actual long-horizon (1-year, 5-year, and 10-year) beta for each simulated fund, denoted 𝛽𝑖
𝐿 (i.e., 𝛽𝑖

1𝑦
, 𝛽𝑖

5𝑦
, 

and 𝛽𝑖
10𝑦

), that corresponds to the true short-horizon beta also assigned, 𝛽𝑖. 

Step 5: Simulate sample returns for each fund and estimate the simulated fund’s monthly beta 

using the simulated data and standard time-series regressions.  We then create simulated sample returns 

for each fund.  If the sample for the actual fund includes N monthly returns, we generate for the matched 
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simulated fund N monthly excess market returns, 𝑅𝑚𝑡 as random draws from a normal distribution with 

mean and variance equal to the matching fund sample estimates of such, and create N monthly excess 

simulated fund returns as 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖 ∗ 𝑅𝑚𝑡 + 𝑒𝑖𝑡, where each 𝑒𝑖𝑡  is a random draw from a zero-mean 

normal distribution with variance equal the sample residual volatility for the sample fund.   Having 

generated a N-month return sample for each simulated fund, we obtain an estimated monthly beta for 

each simulated fund by standard time-series regression methods, after again implementing the 

winsorization method recommended by Welch (2021).   

Step 6: Convert the monthly beta estimate from the simulated monthly sample to a corresponding 

long-horizon beta estimate.  We take the monthly beta estimate obtained in the simulated data for each 

fund in Step 5 and convert it to a corresponding long-horizon (1-year, 5-year, and 10-year) estimate 

(denoted as �̂�𝑖
𝐿𝑆 (i.e., �̂�𝑖

1𝑦,𝑆
, �̂�𝑖

5𝑦,𝑆
, and �̂�𝑖

10𝑦,𝑆
), where the S in the superscript denotes a simulation-based 

estimate) using expression (6a) and associated parameter estimates from the simulated sample.  That is, 

�̂�𝑖
𝐿𝑆 is estimated for each fund from the simulated data using the same procedure by which �̂�𝑖

𝐿 was 

estimated from the sample data in Step 3.   

Step 7: Repeat, to obtain a bootstrap distribution.  We repeat Steps 4 to 6 1,000 times, to obtain 

for each simulated fund a distribution of 1,000 true long-horizon betas (i.e., 𝛽𝑖
𝐿 in Step 4) as well as 1,000 

estimates of long-horizon betas (i.e., �̂�𝑖
𝐿𝑆 in Step 6) that are obtained by employing short-horizon 

parameter estimates in expression (6a).   

Step 8: Assess the nature of the bias in estimates of long run beta that are obtained by using short 

run beta estimates and other parameter estimates in expression (6a).  As noted, the estimates of long-run 

beta obtained by substituting short-horizon parameter estimates in expression (6a) are likely to be biased 

in complex ways.   We seek to quantify the nature of such bias.  To do so, we estimate fund-specific 

regressions of the form 𝛽𝑖
𝐿 = 𝑎𝑖 + 𝑏𝑖 ∗ �̂�𝑖

𝐿𝑆 + 𝑢𝑖 for each of the three investment horizons (i.e., 1 year, 5 
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years, and 10 years) across the 1,000 simulation outcomes in Step 7.12  If the �̂�𝑖
𝐿𝑆were unbiased estimates 

of 𝛽𝑖
𝐿  (an outcome we do not anticipate) these regressions would produce intercepts indistinguishable 

from zero and slope coefficients indistinguishable from one.   If not, the estimated intercept and slope are 

informative regarding the nature of the bias.   

Table 1 provides summary statistics regarding the resulting distribution of regression coefficient 

estimates across the simulated funds, when the simulations are applied based on annual, five year, and 

decade return horizons.  It can be observed that intercepts are positive for virtually all simulated funds 

(the 5th percentile is positive at all three horizons), and average 0.39 in annual returns, and 0.27 in both 

five-year and in decadal returns.  Slope coefficients are virtually all less than one (the 95th percentile is 

less than one at all three horizons) and average 0.62 in annual returns, 0.75 in five-year returns, and 0.78 

in decadal returns.   These results verify that employing monthly parameter estimates in expression (6a) 

leads to biased estimates of long-horizon betas.  They also suggest a solution, which we implement. 

Step 9: Adjust the biased estimates of long horizon beta obtained from the actual sample using the 

information gleaned from the simulations.  Our final estimate of the long-horizon beta for each sample 

fund is �̂�𝑖
𝐿𝐿 = �̂�𝑖 + �̂�𝑖�̂�𝑖

𝐿 ,  where �̂�𝑖 and �̂�𝑖 are the estimated fund i regression coefficients based on 

simulated data in Step 8, and �̂�𝑖
𝐿 is the long-horizon beta estimate obtained when the monthly beta 

estimate and other monthly parameter estimates were employed in expression (6a), as described at Step 3.  

We obtain �̂�𝑖
𝐿𝐿 for the 1-year, 5-year, and 10-year investment horizons (i.e., �̂�𝑖

𝐿𝐿,1𝑦
, �̂�𝑖

𝐿𝐿,5𝑦
, and �̂�𝑖

𝐿𝐿,10𝑦
) 

for each fund.  Since expression (6a) is attributable to Levhari and Levy (1977), we refer to this procedure 

as the modified LL method, and denote the estimate itself with the superscript LL.  Note that the final 

estimate includes both the estimate obtained directly from the sample data and the information obtained 

from the bootstrap simulation regarding the nature of the bias in the sample estimate.  

 
12 Here also, we winsorize the dependent and independent variables at the 10th and 90th percentiles to mitigate the 

influence of outliers.   
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Step 10: Compute each fund’s 1-year, 5-year, and 10-year alpha estimate, and convert each to a 

monthly equivalent to facilitate comparison.  We compile each fund’s N-month (N = 12, 60, or 120) 

returns on a rolling basis, and compute the arithmetic mean, denoted 𝐹𝑁
𝐴𝑣𝑔

, as well as the corresponding 

mean N-month rolling returns to the risk-free asset and SPY over the same months, denoted as 𝑅𝐹𝑁
𝐴𝑣𝑔

 and 

𝑆𝑃𝑌𝑁
𝐴𝑣𝑔

, respectively.  The fund’s 10-year alpha estimate (expressed as a monthly rate) is 

[𝐹120
𝐴𝑣𝑔

− 𝑅𝐹120
𝐴𝑣𝑔

− β̂𝑖
𝐿𝐿,10𝑦

(𝑆𝑃𝑌120
𝐴𝑣𝑔

− 𝑅𝐹120
𝐴𝑣𝑔
)]/120, where β̂𝑖

𝐿𝐿,10𝑦
 is the funds’ 10-year beta obtained in 

Step 9.13  Note that 10-year alpha is only available for funds with at least 120 monthly returns.  Similarly, 

we compute the fund’s 5-year alpha for all funds with at least 60 monthly returns (expressed in monthly 

rate) by replacing β̂𝑖
𝐿𝐿,10𝑦

 with β̂𝑖
𝐿𝐿,5𝑦

 and replacing 120 with 60 in the formula. The fund’s 1-year alpha is 

computed in the corresponding manner.    

 

3. Data and a Validation of the Modified LL Method    

We study a broad sample of nearly 8,000 U.S. equity mutual funds during the 1991 to 2020 

period.  This sample is also employed by Bessembinder, Cooper, and Zhang (2023), who study the 

aggregate wealth effects of mutual fund investing and describe the distribution of long-horizon mutual 

fund returns.  While specific point estimates would differ if we considered alternative samples, e.g. non-

domestic, balanced, or levered funds, the central point we emphasize, that alphas depend on the horizon 

over which returns are measured, is not sample-specific.  Data are obtained from the CRSP survivorship 

bias free Mutual Fund Database.  We begin at 1991, as data regarding fund total net assets (TNA), which 

we use to aggregate fund returns across share classes, are not consistently available for earlier periods.  

We study domestic equity funds while excluding ETFs, target date funds, hedged funds, and leveraged 

 
13 We restate long-horizon alphas as monthly equivalents by dividing by the number of months in the sample.   The 

more natural alternative, to focus on the Nth root (where N is the number of months in the sample) of one plus the 

long-horizon alpha, is precluded for some funds because the estimated long-horizon alpha is less than  

-100%.   Note that the alternative of focusing on the Nth root after winsorizing alpha estimates that are less than  

-100% would lead to extreme negative estimates for the (mainly) high-beta funds involved.  For example, if a fund 

with a ten-year life had a winsorized alpha of -99%, the implied monthly alpha would be -3.77% per month.   
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funds.  Specific fund filters are described in Appendix B.  Prior studies (e.g., Elton, Gruber, and Blake, 

2001) have documented the presence of errors in the CRSP mutual fund data.  We identify and correct 

specific potentially influential errors, and omit a small number of funds with apparent data errors that we 

are not able to correct or verify from alternative sources, as also described in Appendix B.  We also 

exclude funds that have fewer than twelve months of non-missing return data.    

Table 2 presents summary statistics regarding the sample, which contains 7,883 domestic equity 

mutual funds.  The sample includes 1,048,111 fund/months.  Mean TNA is $1.177 billion.  However, the 

TNA distribution is strongly positively skewed, reflecting the presence of very large funds, and the 

sample median TNA is $149 million.  Figure 2 displays the number of funds contained in the sample and 

total TNA for sample funds on an annual basis.  The number of domestic equity mutual funds increased 

rapidly from about 1,000 in 1991 to over 3,400 in 2002, remaining relatively constant until 2007, before 

expanding to approximately 4,300 in 2008.  Sample funds’ aggregate TNA not only rose rapidly in the 

early years of the sample period, from about $300 billion in 1991 to approximately $2.8 trillion in 2000, 

but continued to increase thereafter, to approximately $9.5 trillion in 2020. 

To assess performance at longer horizons we compound the monthly returns.  Since the returns 

include any dividends or other cash distributions, we implicitly assume that distributions are reinvested in 

fund shares.14  As Pastor and Stambaugh (2012) note, investors cannot directly capture the overall market 

return, since transaction costs would be incurred at the times of dividends, stock repurchases, or new 

equity issues.  While Pastor and Stambaugh address this issue by deducting a constant fifteen basis points 

per year from the CRSP value-weighted return, we instead focus on SPY returns, which are net of the 

 
14 Fama (1972) notes that the assumption that dividends and other distributions are reinvested is desirable when 

measuring performance over intervals that are longer than the elapsed time between such distributions, because of 

the implicit assumption that funds invested at the beginning of the sample remain invested throughout.  However, he 

also notes that the approach is “less pure” than some alternatives, because it assumes a reinvestment policy “not 

followed in the (mutual fund) portfolio.” 



 

 

 

19 

fund’s fees and expenses and could in principle have been captured by investors.15  Table 2 shows that the 

pooled mean of matched-month SPY returns is 0.84%.   

3.1 A Check on the Modified LL Procedure 

The modified LL procedure adjusts for the biases that are revealed by the simulations.  However, 

the simulation as well as expression (6a) itself rely on the simplifying assumption that returns are iid.  We 

therefore provide additional evidence regarding the validity of the procedure.  As noted, it is not feasible 

to estimate betas for long return horizons using standard time series regression methods, due to an 

insufficient sample size.  However, it is viable to obtain estimates of annual horizon betas using time 

series methods that, while potentially noisy, are unbiased under standard assumptions.  In light of the fact 

that these regressions are estimated from small sample sizes, we employ median regression rather than 

typical OLS techniques to mitigate the effect of outliers.   

In Table 3 we report data regarding annual-horizon beta estimates obtained using time series 

median regressions (again implementing the winsorization recommendation of Welch, 2021) and those 

obtained based on the modified LL procedure described above.  Results pertain to all funds with at least 

120 monthly returns, i.e. where the time series regression includes at least ten 12-month observations.   

The results on Table 3 show that the distribution of beta estimates is quite similar across the two 

methods.  Across all 3,768 funds with at least ten annual return observations, the mean annual beta is 1.02 

whether estimated by time series methods or by the modified LL method.  The correlation coefficient for 

the annual beta estimates obtained across the two methods is 0.66, which seems reasonable considering 

that each method provides noisy estimates.  Mean annual horizon beta estimates remain similar when the 

sample is broken into funds with an estimated monthly beta greater versus less than one.  For the 2,272 

funds with a monthly beta estimate greater than one the mean annual beta estimate is 1.13 when estimated 

by time series methods and by the modified LL method.  For the 1,496 funds with a monthly beta 

estimate less than one the mean annual beta estimate is 0.84 when estimated by time series regressions 

 
15 The SPY ETF started trading in January of 1993. For 1991 and 1992, we rely on the return on the Vanguard 

S&P500 index fund (ticker symbol VFINX) instead.    
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compared to 0.86 when estimated by the modified LL method.  It can be observed that annual beta 

estimates obtained by the modified LL method are considerably less volatile as compared to annual beta 

estimates obtained by time series regressions.   On balance we view the data reported in Table 3 as 

supporting the conclusion that the modified LL method provides reasonable beta estimates.  

 

4. Long-Horizon Alpha and Beta Estimates  

We implement the modified LL approach described in Section 2.2 to estimate alphas and betas 

for sample funds at the one-year, five-year and ten-year horizons. 

4.1 Empirical Estimates of Long-Horizon Beta  

In Table 4 we report on estimates of short-return-horizon (monthly) betas obtained by standard 

time series regressions and long-return-horizon (annual, five-year, and decadal) betas obtained by the 

modified LL approach.  Here, and in subsequent tables where our emphasis is on comparisons of 

parameters across return measurement horizons, we focus on the 3,768 sample funds with at least 120 

monthly observations, i.e., those funds where we are able to estimate decade horizon parameters, to 

ensure that differences across return measurement horizons are attributable to horizon per se, not to the 

use of differing funds at different horizons.   

The mean beta estimated in monthly returns across the 3,768 funds (Panel A) is 1.03, while the 

mean beta estimated by the modified LL method is 1.02 at the annual horizon, 1.03 at the five-year and 

1.06 at the decade horizons.  We also report results for subsamples delineated by whether the monthly 

alpha estimate is positive or negative and whether the monthly beta estimate is greater than or less than 

one.  These estimates demonstrate the implications discussed earlier.  Mean beta estimates increase with 

return horizon for funds with large monthly betas and positive monthly alphas (Panel B), from 1.14 at the 

annual return horizon to 1.51 at the decade horizon.  The effect of horizon is attenuated for funds with 

negative monthly alpha estimates, even if they have large positive monthly beta estimates (Panel C).  The 

mean beta estimate for these funds is 1.12 at the annual horizon, 1.08 at the five-year horizon, and 1.05 at 

the ten-year horizon.  For funds with small monthly beta estimates and positive monthly alpha estimates 
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(Panel D), estimated betas increase moderately with return measurement horizon, from a mean of 0.86 at 

the annual horizon to 0.88 at the five-year horizon and to 0.93 at the decade horizon.  The smallest long-

return-horizon beta estimates are obtained for funds with small monthly beta estimates and negative 

monthly alpha estimates (Panel E), where the average beta estimates declines from 0.86 at the annual 

horizon to 0.69 at the decade horizon.    

The estimates reported in Table 4 verify that the relation between long-horizon and short-horizon 

betas depends on magnitudes of both short return horizon beta and alpha estimates.  The effect of alpha 

estimates is empirically more important, as demonstrated by the outcomes on Panels C and D, where 

betas change in the direction predicted by the effect of the sign of the short horizon alphas rather than in 

the direction predicted by the magnitude of the short horizon betas.   

4.2 Empirical Estimates of Long-Return-Horizon Alpha    

Table 5 describes the distributions of fund alpha estimates when returns are measured at various 

horizons.  Panel A contains results pertaining to all sample funds with at least 120 monthly returns.  Each 

alpha estimate, regardless of return horizon, is restated as a monthly equivalent to make estimates directly 

comparable.  While the hypothesis that longer horizon mean alphas are equal to monthly mean alphas can 

be rejected, mean alphas for the full sample do not differ greatly across return measurement horizons.  

The cross-fund mean alpha estimate is -0.04% in monthly returns, -0.06% in annual returns, -0.13% in 

five-year returns and -0.18% in decadal returns.16   

Empirical estimates of long-horizon alphas are affected by random sampling noise and by 

changes in true alphas as a function of horizon.  The implication of expression (7) that the effect of return 

horizon on alpha estimates depends on both short horizon alpha and short horizon beta can help to 

distinguish the effects of changes in true alpha as a function of horizon versus the effects of randomness.    

In particular, the theory implies that alphas will tend to decrease with return horizon if short-return-

 
16 Berk and van Binsbergen (2015) argue that foreign funds, which are not included in our sample, perform better 

than domestic funds, and report monthly-horizon alphas for their broader sample that do not differ significantly from 

zero when using returns to an array of Vanguard index funds as benchmarks.   
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measurement-horizon betas are large.  This implication is strongly illustrated by the estimates reported on 

Panels B and C of Table 5.    

Panel B pertains to funds where short horizon beta estimates exceed one and short horizon alpha 

estimates are positive.  For this sample, average alpha estimates decrease from 0.16% at the monthly 

horizon to 0.14% at the annual horizon, -0.05% at the five-year horizon, and remarkably, to -0.20% at the 

decade horizon.   Panel C pertains to funds where short horizon beta estimates are large and short horizon 

alpha estimates are negative.  Alpha estimates decrease with horizon for this sample as well, from an 

average of -0.22% at the monthly horizon to -0.42% at the decade horizon.    

Expression (7) also implies that alphas will tend to increase with return horizon if short horizon 

betas are small.  The estimates on Panels D and E of Table 5 illustrate this implication as well, but less 

strongly.  Specifically, the average alpha estimate for funds with small monthly betas and negative 

monthly alphas grows from -0.14% at the monthly horizon to -0.10% at the decade horizon while the 

mean estimated alpha for funds with small monthly betas and positive monthly alphas grows from 0.16% 

at the monthly horizon to 0.22% at the decade horizon.   

To provide a sense of the overall variation in alpha estimates as a function of return-measurement 

horizon, we report in Panel F average pairwise correlations between monthly, 1-year, 5-year and 10-year 

horizon alphas.  Focusing on all 3,768 funds with at least 120 monthly returns, the correlations of longer-

horizon with monthly alphas decrease from the 1-year to the 10-year horizons, with the smallest 

correlation of 0.53 being observed between monthly and 10-year alpha estimates.  The correlation 

decreases are more pronounced for the subsample of funds with short horizon beta estimates greater than 

one.  Specifically, the correlation between 1-month and decade-horizon alpha estimates for funds with 

estimated monthly SPY betas greater than one is 0.46 versus a correlation of 0.75 between 1-month and 

10-year alpha estimates for funds with estimated monthly SPY betas less than one.    

The change in alpha estimates and the decrease in correlations between short and long-horizon 

alphas are suggestive of important differences in the economic information conveyed by alpha estimates 
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across return measurement horizons. Therefore, we next assess the extent to which the signs of alpha 

estimates are altered by the horizon over which returns are measured. Since mutual fund alpha is often 

interpreted as informative regarding management skill it is particularly useful to know how often the 

same dataset can imply positive alpha estimates if returns are measured at one horizon and negative alpha 

estimates if returns are measured at an alternative horizon.   

For the full sample of 3,768 funds with at least 120 monthly returns, the results on Panel G of 

Table 5 reveal a reduction in the percentage of funds with positive alpha estimates, from 43.2% at the 

monthly horizon to 30.4% at the decade horizon.   However, the effects are asymmetric.  Among those 

funds with positive monthly alpha estimates, 52.6% have positive decade horizon alpha estimates, or 

equivalently, 47.4% have negative alpha estimates.  In contrast, among those funds with negative monthly 

alpha estimates, a smaller percentage (13.5%) have a decade-horizon alpha estimate with the opposite, i.e. 

positive, sign.  These results suggest that long-horizon investors might consider avoiding funds with 

negative monthly alphas because such funds are likely to have negative long-horizon alphas.  We display 

in Figure 3 scatter plots of decade-horizon versus monthly-horizon alpha estimates.17  Fund outcomes 

displayed in the lower right quadrant and upper left quadrants of Figure 3 are those where the sign of the 

alpha estimate differs across short versus long return measurement horizons.   For example, the lower 

right quadrant of the “All funds” Panel illustrates the 47.4% of funds with positive monthly alpha 

estimates and negative decade-horizon alpha estimates.  

As anticipated based on expression (7), the divergence in alpha estimates is more notable when 

focusing on funds with monthly beta estimates greater than one.  Panel G of Table 5 shows that among 

those funds with a monthly beta estimate greater than one and a monthly alpha estimate that is negative, 

relatively few divergences arise; only 5.0% have a positive alpha estimate based on decadal returns.  In 

contrast, among the funds with a monthly beta estimate greater than one and a monthly return alpha 

estimate that is positive, only 28.9% have a positive alpha or, equivalently, nearly three quarters (71.1%) 

 
17 To minimize the impact of outliers, Figure 3 display only those outcomes where the absolute monthly alpha 

estimate is less than one percent per month.    
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have a negative alpha estimate based on decade-horizon returns.  The scatter plot for this group of funds 

is illustrated in Figure 3, in the Panel for “Funds with monthly SPY beta >1”, in the lower right quadrant 

of the figure.  Thus, for most high beta funds with positive monthly alpha estimates increasing the return 

measurement horizon results in a negative alpha estimate, even within the same sample.  These results 

also reflect the fact that the effect of return horizon on alpha estimates is asymmetric, being stronger for 

funds with larger short-horizon beta estimates.     

Finally, we report in Panel H of Table 5 information regarding the magnitudes of divergences 

between short-horizon and long-horizon alpha estimates for sample funds.  Large divergences become 

more common at longer return measurement horizons.  In the full sample of 3,768 funds with at least 120 

monthly returns, the difference in alpha estimates as compared to those obtained in monthly returns 

exceeds five percent per year for 0.7% of funds when returns are measured at the annual horizon and for 

18.3% of funds when returns are measured at the decade horizon.   The differences exceed two percent 

per year for 4.3% of funds when returns are measured at the annual horizon and for 48.9% of funds when 

returns are measured at the decade horizon.   

The asymmetry predicted by our analysis is also observable in Panel H.  Focusing on the 

subsample of funds with monthly return beta estimates that exceed one and with negative alpha estimates, 

the percentage of funds where the difference in alpha estimates as compared to the monthly horizon 

exceeds five percent per year is 1.5% at the annual horizon and 20.8% at the decade horizon, while 

corresponding results for the subsample with negative monthly alpha estimates and monthly beta 

estimates that are less than one are 0.1% at the annual horizon and 0.9% at the decade horizon. 

On balance, the results reported on Table 5 verify that the information regarding mutual fund 

performance conveyed by studying compound long-horizon returns differs from that conveyed by 

monthly returns.  Divergences in alpha estimates across long vs. short horizon returns are particularly 

pertinent for those funds with large estimates of short horizon betas.      
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4.2.1 Outcomes for Fund Families 

The results described to this point either pertain to all funds with sufficient return observations in 

the sample or to subsamples delineated by the magnitude of short horizon alpha and beta estimates.   We 

next assess outcomes by mutual fund family, for the twenty-five families with the largest combined TNA 

as of the end of our sample period.   Our intent is to assess whether altering the horizon over which 

returns are measured differentially affects conclusions regarding fund performance across families. 

To do so, we implement the procedures described in the prior section for each fund within a 

family, and then compile average alphas across funds within each family, for returns measured at the one-

month, five-year, and ten-year horizons.  Outcomes, in each case restated as the monthly equivalent, are 

reported on Table 6 and show that average alpha estimates for these larger and more successful fund 

families are less negative than for the full sample.  Specifically, the cross-fund mean monthly alpha at the 

five-year horizon is -0.08% for these large funds, compared to -0.13% for the full sample (Table 5, Panel 

A).    

Changing the horizon over which returns are measured has meaningful impacts on fund average 

alphas, which are -0.01%, -0.08%, and -0.11% at the one-month, five-year, and ten-year return 

measurement horizons, respectively.  The decrease of 0.10% per month or 1.20% per year when alphas 

are estimated at the 10-year horizon rather than the one-month horizon is economically substantive, being 

comparable to average expense ratios.   The effect of return measurement horizon differs across fund 

families, with the spread between 10-year and monthly alphas ranging between -0.26% and 0.24% per 

month.  For the fund family listed in row 7 of Table 6, whose average monthly beta is 1.01, the alpha 

estimated from monthly returns is (barely) positive, equal to 0.005%, while that estimated from decade-

horizon returns is -0.221% per month.  The sign of the average monthly alpha differs from the sign of the 

average decade-horizon alpha for twelve of the twenty-five fund families, and for sixteen of the fund 

families the absolute difference between the mean monthly-horizon and decade-horizon alphas exceeds 
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ten basis points per month.  The upshot is that changes in the horizon over which returns are measured has 

meaningful and differential effects on measured performance across mutual fund families.  

4.2.2 Robustness Tests 

In the Internet Appendix we present two sets of robustness tests.   The first considers the fact that 

many investors’ rebalancing periods will be less than their investment horizons.   To obtain some 

information regarding the relevance of rebalancing periods we report on estimated alphas and betas for 

mutual funds that are grouped based on their trading activity, reasoning that funds with higher turnover 

also effectively have shorter rebalancing periods.   Table A1 in the Internet Appendix shows that the 

effect of return measurement horizon is consistent across turnover terciles.     

Linnainmaa (2013) observes that cross-sectional averages of fund-specific alpha estimates yield 

biased estimates of average fund manager skill, due to the endogenous relation between performance and 

fund lives.  Our focus is not on manager skill per se, but on the distinct issue of how the return 

measurement horizon affects parameter estimates.  Nevertheless, we provide evidence regarding the effect 

of return measurement horizon for estimated alphas and beta on mutual fund portfolios.  Linnainmaa 

(2013) notes that since returns to such portfolios can be computed for every month of the sample, they are 

not affected by the biases that he identifies.   The results presented in Table A2 of the Internet Appendix 

show that the effect of return horizon on alpha estimates is broadly similar for mutual fund portfolios as 

for individual mutual funds.     

 

5. Conclusions 

The literature that studies funds’ return performance (including mutual funds, hedge funds, 

pension funds, etc.) is vast, but most of the evidence is based on returns measured over short, most often 

monthly, horizons.  Investment horizons differ across investors and can stretch to decades.  While many 

investors periodically rebalance their portfolios, the parameters of return distributions (means, medians, 

standard deviations, covariances, skewness, etc.) vary with return horizon in complex and non-linear 

ways, with or without periodic portfolio rebalancing.  We know of no compelling reason to believe that 
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parameters estimated from monthly returns are necessarily the most relevant to investors with disparate 

investment and decision horizons. 

  In this paper, we focus attention on the effects of measuring returns over various horizons for 

estimates of investors mean return after allowing for factor outcomes, i.e. alpha estimates.   Importantly, 

our emphasis is not on forecasting, learning, or time-varying parameters, but simply on the effects of how 

returns are measured within a given sample.  We study U.S. equity mutual funds for the 1991 to 2020 

period.  Investors are generally concerned with the systematic risk to which they are exposed, and want to 

know whether the expected return on their position compensates for that risk.  In short, they are 

concerned with alphas and betas.  We show theoretically and empirically that the sign of the short-horizon 

(e.g. monthly) alpha does not necessarily reveal the sign of the longer horizon alpha, and that the relation 

depends on the magnitude of both short-return-horizon betas and alphas.  While these effects are 

relatively modest over shorter intervals, e.g. daily vs. monthly, they become large when horizons are long.   

Further, horizon effects are asymmetric.   In particular, alphas will tend to increase for funds with smaller 

short-return-horizon betas and will tend to decrease for funds with larger short-horizon betas as the return 

measurement interval increases, and more so when short-horizon beta estimates are larger.  Long run 

betas, and by implication, long run alphas are also affected by magnitudes of short run alphas.       

 The biggest practical hurdle to measuring investment performance over longer return 

measurement horizons arises from the fact that betas for longer return measurement horizons cannot be 

estimated by means of standard time series regressions, due to an insufficient number of time series 

observations.  We obtain estimates of long-horizon betas using the theoretical relation between short and 

long return measurement horizon parameters, and guided by the outcomes of simulations.  While the 

estimates we obtain appear reasonable, they do rely on simplifying assumptions (including that returns are 

iid over time) that are violated in the data, and we anticipate that future researchers may well be able to 

refine these methods.  Relying on these beta estimates, we show alpha estimates vary meaningfully 

depending on return measurement horizon.    
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The interpretation of these results is intrinsically related to the evaluation of asset pricing models.   

Jensen (1968) introduced alpha as a measure of mutual fund performance, noting (page 390) that “the 

measure of portfolio performance summarized below is derived from a direct application of the 

theoretical results of the capital asset pricing models derived independently by Sharpe, Lintner and 

Treynor.”  More broadly, a central implication of linear factor-based asset pricing models is that alphas 

estimated with respect to the model’s factors should not differ significantly from zero.  However, linear 

factor models generally apply at a single horizon.  The Capital Asset Pricing Model (CAPM) of Sharpe 

(1964) and Lintner (1965) is explicitly a single period model, though the length of the period is left 

unspecified.  Levhari and Levy (1977) demonstrate that tests of the CAPM are biased if researchers 

implement tests using returns measured over the wrong horizon.  More recently, Chernov, Lochstoer, and 

Lundeby (2020) observe that a linear factor model that is valid (i.e. generates zero alphas) at a single 

period horizon does not generally extend (as a linear model in compound factor outcomes) to multi-period 

horizons.18  

Our results suggest that the degree to which returns are abnormal cannot be evaluated 

independent of the question of which return measurement horizon is most relevant to various investors.  

Further, measures of mutual fund performance that are based on short-horizon returns may be 

uninformative or even misleading as to whether funds deliver abnormal returns after allowing for beta 

risk over the longer horizons that may be relevant to many investors.       

 Our results that beta and alpha depend on the horizon over which returns are measured suggest a 

number of possible extensions.  Alphas and betas depend on return measurement horizon because of the 

effects of compounding.  In particular, a given percentage return during a specified time interval is more 

(less) influential if it was preceded by positive (negative) returns that increased (decreased) the 

investment base prior to the start of the interval.  We follow Levhari and Levy (1977), Longstaff (1989), 

 
18 In the case of the CAPM, Cochrane (2005, page 152) observes that the time t “stochastic discount factor” can be 

stated as mt = a + b(1+Rmt), where Rmt is the time t return on the market portfolio.  The T-period stochastic discount 

factor is therefore 𝑚𝑡
𝑇 = ∏ (a +  b(1 + Rmt))𝑇

𝑡=1 , which contains interaction terms and cannot be stated as a linear 

function of the compound market return ∏ (1 + 𝑅𝑚𝑡) − 1
𝑇
𝑡=1  alone.  
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and Kothari, Shanken, and Sloan (1995) in modeling the effect of return measurement horizon on beta 

while focusing on total returns that include both cash distribution and capital gain components.  An 

implicit assumption is that multiperiod returns include the effects of reinvesting cash disbursements.  

However, mutual fund investors may or may not in aggregate reinvest dividends or other net cash 

disbursements, implying that the effect of horizon on beta will be muted or amplified depending on the 

rate of net cash disbursements via mutual fund flows.   It would be interesting to refine our analysis to 

allow for this consideration and assess if the resulting changes in long-horizon alpha and beta estimates 

meaningfully affect long-horizon performance measures.   Similarly, any growth in the investment base 

that simply reflect the effects of inflation need not imply greater changes in investor utility because of 

given percentage returns, so it would be of interest to assess if a focus on real rather than nominal returns 

has a noteworthy effect on inferences regarding investment performance measured over various horizons.  

Further, while our central conclusion that alphas depend on return measurement horizon is likely to be 

robust, point estimates would be altered if the sample were broadened, e.g. to include international, target 

date, and levered funds, or narrowed to focus on specific fund categories.  Outcomes will also vary if 

multi-factor or style-specific benchmarks are employed.    

Perhaps the most intriguing questions are related to the assessment of which return measurement 

horizon is most relevant to investors.  Some relevant evidence might be obtained by assessing the return 

measurement horizon that best explains relations between mutual fund performance and fund flows 

originating with various types of investors.   Additional evidence might be provided by assessing the 

return measurement horizon for which various asset pricing models best perform.    
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Appendix A: Instantaneous and Long-Horizon Alphas and Betas 

 
In this appendix, we derive the relationship between instantaneous alpha and long-horizon alpha 

in a continuous time CAPM. Let the market price 𝑃𝑚 and asset i’s idiosyncratic return 𝑉𝜖 follows 

Brownian motions: 

𝑑𝑃𝑚
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 Applying Ito's lemma yields: 
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Long-horizon market return and return variance are as follows: 
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The asset’s instantaneous return follows: 

𝑑𝑃𝑖
𝑃𝑖
= 𝛼𝑖𝑑𝑡 + 𝛽𝑖

𝑑𝑃𝑚

𝑃𝑚
+
𝑑𝑉𝜖

𝑉𝜖
= 𝛼𝑖𝑑𝑡 + 𝛽𝑖(𝜇𝑚𝑑𝑡 + 𝜎𝑚𝑑𝑍

𝑚) + 𝜎𝜖𝑑𝑍
𝜖 

= (𝛼𝑖 + 𝛽𝑖𝜇𝑚)𝑑𝑡 + 𝛽𝑖𝜎𝑚𝑑𝑍
𝑚 + 𝜎𝜖𝑑𝑍

𝜖 

Applying Ito’s lemma to the last equation yields:  
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The asset’s long-horizon return and return variance are as follows: 

log𝑃𝑇
𝑖 − log𝑃0

𝑖 = (𝛼𝑖 + 𝛽𝑖𝜇𝑚 −
𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2
)𝑇 + 𝛽𝑖𝜎𝑚∫ 𝑑𝑍𝑚

𝑇

0

+ 𝜎𝜖∫ 𝑑𝑍
𝜖
𝑑𝑉ϵ

𝑉ϵ
𝑇

0

 

 

𝐸 (
𝑃𝑇
𝑖

𝑃0
𝑖
) = 𝐸 [𝑒

(𝛼𝑖+𝛽𝑖𝜇𝑚−
𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2 )
𝑇+𝛽𝑖𝜎𝑚 ∫ 𝑑𝑍𝑚

𝑇

0
+𝜎

𝜖∫ 𝑑𝑍𝜖
𝑇
0 ] 

= 𝑒
(𝛼𝑖+𝛽𝑖𝜇𝑚−

𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2 )
𝑇+(

𝛽𝑖
2𝜎𝑚

2

2
+
𝜎𝜖
2

2 )
𝑇
= 𝑒(𝛼𝑖+𝛽𝑖𝜇𝑚)𝑇 

 

𝑉𝑎𝑟 (
𝑃𝑇
𝑖

𝑃0
𝑖
) = 𝐸 [(

𝑃𝑇
𝑖

𝑃0
𝑖
)

2

] − 𝐸 [(
𝑃𝑇
𝑖

𝑃0
𝑖
)]

2

 

= 𝐸 [𝑒
2(𝛼𝑖+𝛽𝑖𝜇𝑚−

𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2 )
𝑇+2𝜎𝑚 ∫ 𝑑𝑍𝑚

𝑇

0
+2𝜎𝜖 ∫ 𝑑𝑍𝜖

𝑇

0
] − 𝑒2(𝛼𝑖+𝛽𝑖𝜇𝑚)𝑇 

= 𝑒
2(𝛼𝑖+𝛽𝑖𝜇𝑚−

𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2 )
𝑇+2𝛽𝑖

2𝜎𝑚
2 𝑇+2𝜎𝜖

2𝑇
− 𝑒2(𝛼𝑖+𝛽𝑖𝜇𝑚)𝑇 

= (𝑒(𝛽𝑖
2𝜎𝑚

2 +𝜎𝜖
2)𝑇 − 1) 𝑒2(𝛼𝑖+𝛽𝜇𝑚)𝑇 

 

𝐶𝑜𝑣 (
𝑃𝑇
𝑖

𝑃0
𝑖
,
𝑃𝑇
𝑚

𝑃0
𝑚) = 𝐸 [(

𝑃𝑇
𝑖

𝑃0
𝑖

𝑃𝑇
𝑚

𝑃0
𝑚)] − 𝐸 [

𝑃𝑇
𝑖

𝑃0
𝑖
] 𝐸 [

𝑃𝑇
𝑚

𝑃0
𝑚] 

= 𝐸 [𝑒
(𝛼𝑖+𝛽𝑖𝜇𝑚−

𝛽𝑖
2𝜎𝑚

2

2
−
𝜎𝜖
2

2 )
𝑇+𝛽𝑖𝜎𝑚 ∫ 𝑑𝑍𝑚

𝑇

0
+𝜎𝜖 ∫ 𝑑𝑍𝜖

𝑇

0
𝑒
(𝜇𝑚−

𝜎𝑚
2

2
)𝑇+𝜎𝑚 ∫ 𝑑𝑍𝑚

𝑇

0 ] − 𝑒(𝛼𝑖+𝛽𝑖𝜇𝑚)𝑇𝑒𝜇𝑚𝑇 

= 𝐸 [𝑒
[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚−

1
2(
𝛽𝑖
2𝜎𝑚

2 +𝜎𝑚
2 +𝜎𝜖

2)]𝑇+(𝛽𝑖+1)𝜎𝑚 ∫ 𝑑𝑍𝑚
𝑇

0
+𝜎𝜖 ∫ 𝑑𝑍𝜖

𝑇

0 ] − 𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇 

= 𝑒
[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚−

1
2(
𝛽𝑖
2𝜎𝑚

2 +𝜎𝑚
2 +𝜎𝜖

2)]𝑇+
1
2
(𝛽𝑖+1)

2𝜎𝑚
2 𝑇+

1
2
𝜎𝜖
2𝑇
− 𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇 

= (𝑒𝛽𝑖𝜎𝑚
2 𝑇 − 1)𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇 

 



 

 

 

32 

The asset’s long-horizon beta is:  

𝛽𝑖
𝐿 =

𝐶𝑜𝑣 (
𝑃𝑇
𝑖

𝑃0
𝑖 ,
𝑃𝑇
𝑚

𝑃0
𝑚)

𝑉𝑎𝑟 (
𝑃𝑇
𝑚

𝑃0
𝑚)

=
(𝑒𝛽𝑖𝜎𝑚

2 𝑇 − 1)𝑒[𝛼𝑖+(𝛽𝑖+1)𝜇𝑚]𝑇

(𝑒𝜎𝑚
2 𝑇 − 1)𝑒2𝜇𝑚𝑇

 

The relationship between long-horizon alpha and instantaneous alpha is:  
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The relationship between long-horizon alpha and instantaneous alpha is non-linear and 

complicated. Long-horizon and instantaneous alphas could have different signs. They have the same sign 

when instantaneous beta is one. When  𝛽𝑖 = 1, 𝛼𝑖
𝐿 = 𝑒𝛼𝑖𝑇 − 1 and has the same sign as 𝛼𝑖.  



 

 

 

33 

Appendix B: Sample Construction and Data Filters 

 
We obtain data for the 1991 to 2020 period from the CRSP survivorship bias free Mutual Fund 

Database.  We begin at 1991, as data regarding fund total net assets (TNA), which we use to aggregate 

fund returns across share classes, is not consistently available for earlier periods.  We rely on the CRSP 

share class group number (crsp_cl_grp) in the fund names file.  For funds without a CRSP share class 

group number, we identify share classes of the same fund based on fund names.  When funds have 

multiple share classes CRSP fund names contain “/” or “;”.  The part of the fund name after the last “/” or 

“;” refers to the sub share class, while the prior part refers to the main fund name. For example, the fund 

named “MainStay Funds: MainStay Small Cap Growth Fund; Class A Shares” is Class A of the MainStay 

Small Cap Growth Fund; the fund named “Alliance Strategic Balanced Fund/A” is Class A of the 

Alliance Strategic Balanced Fund.   

We study domestic equity funds (CRSP fund style code starting with “ED”), while excluding 

exchange traded funds, exchange traded notes (those with CRSP et_flag equal to “F” or “N”), funds that 

take short positions (CRSP fund style “EDYS”), commodity funds (CRSP fund style “EDSC”) and real 

estate funds (CRSP fund style “EDSR”).   We exclude target date funds, since these hold substantial non-

equity positions.  To exclude target date funds and college savings funds we remove all funds with names 

that contain a four-digit number between 1990 and 2050 and the word “target”, except that we do not 

exclude funds with “Russell 2000” or “Russell2000” in their names.     

We further exclude hedged funds (CRSP fund style of “EDYH” and Lipper fund style code of 

“LSE”), market neutral funds (CRSP fund style of “EDYH” and Lipper fund style code of “EMN”) and 

absolute return funds (CRSP fund style of “EDYH” and Lipper fund style code of “ABR”).  We also 

screen some funds within the CRSP style code starting with “ED”, but with names that are inconsistent 

with this categorization.   Specifically, we exclude a fund with “VIX” in its name, funds with 

“Long/Short”, “Long-Short”, and “OTC/Short” in their names, funds whose name includes “ETF” or 
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“ETN”, leveraged funds with “1.25x”, “1.5x”, “2x”, “2.5x”, “3x”, and “4x” in their names, and one fixed 

income fund with “Government Portfolio” in its name.   

Prior studies (e.g., Elton, Gruber, and Blake, 2001) have documented the presence of errors in the 

CRSP mutual fund data.  We mitigate the effect of potentially influential errors by comparing large 

reported returns to those contained in the Morningstar Mutual Fund database, or if Morningstar data is not 

available to the returns implied by percentage changes in CRSP-reported NAV or TNA.  Specifically, we 

identify 836 extreme fund returns based on a deviation from the same-month CRSP value-weighted 

market return of 30% or more.   With the help of Professor Shuaiyu Chen, we are able to match 633 of 

these to monthly return data in the Morningstar mutual fund database.  For 524 of these cases, the CRSP 

and Morningstar returns differ by less than 1% and we retain the CRSP return.  For the remaining 109 

cases we retain the Morningstar return, which in every instance is less extreme that the CRSP return.   For 

the 203 instances that cannot be matched to Morningstar, we focus on the percentage change in the CRSP 

reported net-asset-value (NAV) as well as the TNA.   We retain observations where the reported return 

deviates from both the NAV and TNA-implied returns by less than 30%.   For 75 observations from 53 

funds the deviation exceeds 30%, and we delete the associated funds from the sample.  Finally, we 

exclude funds that have fewer than twelve months of non-missing return data.   The sample employed 

here is also used by Bessembinder, Cooper, and Zhang (2023).   
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Figure 1, Panel A 

Relation between instantaneous beta and long-horizon beta.     

This figure displays long-horizon (1, 5, and 10 year) betas implied by text equation (6), for a variety of possible 

instantaneous betas and alphas.  The computations incorporate a mean instantaneous market return of 9% per year 

and a standard deviation of the instantaneous market return of 19% per year. The figure reveals that long-horizon 

beta depends on not only the instantaneous beta but also the instantaneous alpha, and that the relationship between 

long-horizon and short-horizon beta is non-linear. When instantaneous alpha is zero, long-horizon beta is greater 

(smaller) than short-horizon beta if short-horizon beta is above (below) one.    
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Figure 1, Panel B 

Relation between instantaneous beta and long-horizon alpha   

This figure displays long-horizon (1, 5, and 10 year) annualized alphas implied by text equation (6), for a variety of 

possible instantaneous betas and alphas.  The computations incorporate a mean instantaneous market return of 9% 

per year and a standard deviation of the instantaneous market return of 19% per year. The figure reveals that long-

horizon and short-horizon alphas differ considerably and may have different signs. Short-horizon alphas could be 

misinformative or even misleading about funds’ long-run performance.  
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Figure 2  

Number of funds and aggregate TNA, by year  

This figure plots the annual number of sample equity funds (left axis) and the aggregate TNA in $Billion (right axis) 

in each year from 1991 to 2020.    
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Figure 3 

Plots of fund monthly alphas and 10-year alphas   

This figure displays plots of fund monthly and 10-year alphas for All funds, Funds with monthly SPY beta >1 and 

Funds with monthly SPY beta <1. In these figures, to minimize the visual impact of outliers, we plot the funds with 

abs(monthly alpha) < 1% and abs(10-year alpha) < 1%/month. This figure reveals that 10-year alphas differ 

significantly from monthly alphas. For funds with positive monthly alpha and monthly beta above one, the majority 

(71.1%) of them have negative l0-year alpha. For funds with negative monthly alpha and monthly beta below one, 

28.7% of them have positive l0-year alpha.    

  



 

 

 

41 

Table 1: Estimating relations between the true long-horizon beta and the sample long-horizon beta  

 

This table presents summary statistics for regression results of the true long-horizon beta on the long-horizon beta 

computed from an observed sample using bootstrap simulations. In each simulation, we generate a true monthly beta 

for each fund and compute the corresponding true N-month beta (𝛽𝑖
𝐿) using Equation (6a) in the text. We then 

generate a random sample of N-month fund excess returns and SPY excess returns using the true monthly beta and 

other parameters detailed in Section 2.2. Lastly, we estimate the fund’s monthly beta in this randomly generated 

sample and compute the corresponding N-month beta (�̂�𝑖
𝐿𝑆) estimate using Equation (6a) in the text and other 

parameters estimated from this random sample. We repeat the simulation 1,000 times for each fund and then 

estimate the following regression: 𝛽𝑖
𝐿 = 𝑎 + 𝑏 ∗ �̂�𝑖

𝐿𝑆 + 𝑢. We consider three long-horizon investment horizons for 

each fund: 1-year, 5-year, and 10-years. This table shows that long-horizon betas based on Equation (6a) and 

monthly beta estimate are likely biased, and it is necessary to correct the bias using the relationship between true and 

estimated long-horizon beta based on bootstrap simulations. 

 

Variable N mean sd p5 p25 p50 p75 p95 

1-year beta 

a_hat 7883 0.394 0.264 0.067 0.161 0.350 0.575 0.903 

b_hat 7883 0.623 0.221 0.252 0.440 0.640 0.827 0.923 

R-squared 7883 0.529 0.243 0.154 0.318 0.526 0.755 0.881 

5-year beta 

a_hat 5578 0.273 0.231 0.034 0.086 0.200 0.397 0.762 

b_hat 5578 0.748 0.179 0.396 0.634 0.791 0.903 0.954 

R-squared 5578 0.670 0.207 0.278 0.526 0.712 0.852 0.923 

10-year beta 

a_hat 3768 0.266 0.236 0.038 0.086 0.191 0.368 0.766 

b_hat 3768 0.778 0.150 0.473 0.687 0.813 0.904 0.952 

R-squared 3768 0.707 0.176 0.364 0.589 0.740 0.858 0.920 
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Table 2: Summary statistics of fund return, expense ratio and TNA    

 

This table reports summary statistics of fund expense ratios and TNA at the fund-month level, as well as monthly 

fund returns and monthly returns to the CRSP value-weighted market portfolio and the SPDR S&P 500 ETF. Our 

sample includes 7,883 U.S. equity mutual funds from 1991 to 2020.    

 

  # unique # fund-         

Variable funds months Mean Median Std. dev. Skewness 

Fund return (%), monthly 7,883   1,048,111  0.776 1.158 5.419 -0.425 

Market return (%), monthly 7,883   1,048,111  0.882 1.380 4.496 -0.626 

SPY return (%), monthly 7,883   1,048,111  0.835 1.328 4.332 -0.616 

Fees (%), monthly 7,883   1,048,111  0.095 0.094 0.049 1.583 

TNA ($B), monthly 7,883   1,048,111  1.177 0.149 7.703 42.553 
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Table 3: Comparing annual betas estimated using the modified LL approach to annual beta estimated based 

on time-series return regressions.     

 

For those mutual funds with at least 120 monthly returns, we estimate the 1-year (i.e., 12-month) beta against the 

S&P 500 ETF (SPY) by estimating time series median regressions of excess 12-month fund returns on excess 12-

month SPY returns and by the modified Levhari and Levy (LL) approach described in Section 2.2. This table 

presents summary statistics of the monthly beta, the annual beta estimated from the modified LL approach, and the 

annual beta estimated from the conventional time series regressions. Following Welch (2021), we winsorize fund 

returns at -2 times and 4 times the contemporaneous SPY returns when estimating monthly and annual betas using 

time-series regressions. This table shows that 1-year betas estimated from our modified LL method are close to 1-

year betas estimated from time-series regressions. The results help validate our modified LL method.   

 

Variable N Mean Median Std. dev. Skewness 

All funds 

Monthly beta 3768 1.025 1.027 0.202 0.184 

1-year beta estimated from modified LL method 3768 1.020 1.028 0.173 -0.632 

1-year beta estimated from actual returns 3768 1.016 0.998 0.300 1.566 

Funds with monthly beta against SPY > 1 

Monthly beta 2272 1.133 1.096 0.149 3.706 

1-year beta estimated from modified LL method 2272 1.125 1.104 0.101 0.745 

1-year beta estimated from actual returns 2272 1.132 1.080 0.288 3.069 

Funds with monthly beta against SPY < 1 

Monthly beta 1496 0.861 0.912 0.157 -2.899 

1-year beta estimated from modified LL method 1496 0.862 0.906 0.134 -1.370 

1-year beta estimated from actual returns 1496 0.840 0.878 0.223 -1.766 
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Table 4: Long-horizon beta versus short-horizon beta  

 

We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 

500 ETF (SPY) and compute its long-horizon beta against SPY over three return horizons (1 year, 5 years, and 10 

years) using the modified Levhari and Levy (LL) approach described in Section 2.2. This table compares the 

monthly versus long-horizon fund betas for all funds with at least 120 monthly returns and for four sub-groups of 

funds depending on whether their monthly SPY beta is above 1 and whether their monthly SPY alpha is positive. 

Following Welch (2021), we winsorize fund returns at -2 times and 4 times the contemporaneous SPY returns when 

estimating monthly betas using time-series regressions. This table shows that long-horizon beta is greater (smaller) 

than monthly beta for funds with positive (negative) monthly alpha.    

 

Beta N Mean Median Std. dev. Skewness 

Panel A: All funds 

Monthly beta 3768 1.025 1.027 0.202 0.184 

1-year beta 3768 1.020 1.028 0.173 -0.632 

5-year beta 3768 1.027 1.014 0.251 0.029 

10-year beta 3768 1.061 1.003 0.395 0.988 

Panel B: Funds with monthly SPY beta > 1 & monthly SPY alpha > 0 

Monthly beta 903 1.116 1.088 0.114 3.885 

1-year beta 903 1.139 1.119 0.094 0.861 

5-year beta 903 1.281 1.249 0.176 0.921 

10-year beta 903 1.509 1.441 0.347 1.312 

Panel C: Funds with monthly SPY beta > 1 & monthly SPY alpha < 0 

Monthly beta 1369 1.144 1.102 0.167 3.431 

1-year beta 1369 1.116 1.090 0.104 0.751 

5-year beta 1369 1.078 1.049 0.157 1.459 

10-year beta 1369 1.046 1.008 0.257 2.560 

Panel D: Funds with monthly SPY beta < 1 & monthly SPY alpha > 0 

Monthly beta 723 0.846 0.898 0.157 -1.648 

1-year beta 723 0.861 0.902 0.142 -1.256 

5-year beta 723 0.882 0.923 0.200 -0.981 

10-year beta 723 0.928 0.944 0.285 -0.139 

Panel E: Funds with monthly SPY beta < 1 & monthly SPY alpha < 0 

Monthly beta 773 0.875 0.927 0.156 -4.161 

1-year beta 773 0.862 0.908 0.127 -1.503 

5-year beta 773 0.775 0.817 0.161 -1.175 

10-year beta 773 0.688 0.721 0.191 -0.759 
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Table 5: Long-horizon alpha versus short-horizon alpha and beta   

 

We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 

500 ETF (SPY) and compute its long-horizon beta against SPY over three investment horizons (1 year, 5 years, and 

10 years) using the modified Levhari and Levy (LL) approach detailed in Section 2.2. Lastly, we compute each 

fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. Panels A-E report the monthly 

and long-horizon fund alphas for all funds with at least 120 monthly returns and for four sub-groups of funds 

depending on whether their monthly SPY beta is above 1 and whether their monthly SPY alpha is positive.  Each 

mean estimate differs significantly from zero, and each long horizon estimates differs significantly from the 

corresponding monthly estimates, each at the .01 level.  Panel F reports the pairwise correlation coefficients between 

the alphas at different investment horizons for all funds with at least 120 monthly returns and subsamples. Panel G 

compares the sign of the alpha at different investment horizons for all funds with at least 120 monthly returns and 

subsamples. Panel H presents the fraction of funds whose long-horizon and short-horizons differ by 1%, 2%, and 

5% per year, respectively, for all funds with at least 120 monthly returns and subsamples. This tables shows that 

long-horizon alphas are significantly smaller than monthly alphas, and the spread between monthly and long-horizon 

alphas depends on the fund’s monthly beta and alpha. Overall, monthly alphas based on conventional time-series 

regressions are misinformative or even misleading about funds’ long-horizon performance.    

 

Panels A-E: Summary statistics of long-horizon alpha and short-horizon alpha against SPY 

  N Mean Median Std. dev. Skewness 

Panel A: All funds 

Monthly alpha (%) 3768 -0.042 -0.028 0.263 -2.350 

1-year alpha (%, monthly rate) 3768 -0.057 -0.043 0.258 -1.012 

5-year alpha (%, monthly rate) 3768 -0.125 -0.103 0.293 -0.601 

10-year alpha (%, monthly rate) 3768 -0.178 -0.129 0.412 -0.572 

Panel B: Funds with monthly SPY beta SPY > 1 & monthly SPY alpha > 0 

Monthly alpha (%) 903 0.160 0.128 0.139 1.668 

1-year alpha (%, monthly rate) 903 0.136 0.098 0.178 2.060 

5-year alpha (%, monthly rate) 903 -0.051 -0.053 0.254 -0.022 

10-year alpha (%, monthly rate) 903 -0.196 -0.154 0.418 -0.520 

Panel C: Funds with monthly SPY beta SPY > 1 & monthly SPY alpha < 0 

Monthly alpha (%) 1369 -0.223 -0.162 0.265 -5.146 

1-year alpha (%, monthly rate) 1369 -0.236 -0.184 0.239 -2.993 

5-year alpha (%, monthly rate) 1369 -0.304 -0.253 0.273 -1.382 

10-year alpha (%, monthly rate) 1369 -0.421 -0.340 0.374 -0.835 

Panel D: Funds with monthly SPY beta SPY < 1 & monthly SPY alpha > 0 

Monthly alpha (%) 723 0.155 0.108 0.146 1.841 

1-year alpha (%, monthly rate) 723 0.138 0.090 0.153 1.763 

5-year alpha (%, monthly rate) 723 0.138 0.092 0.219 0.467 

10-year alpha (%, monthly rate) 723 0.222 0.191 0.281 -0.119 

Panel E: Funds with monthly SPY beta SPY < 1 & monthly SPY alpha < 0 

Monthly alpha (%) 773 -0.141 -0.107 0.130 -2.782 

1-year alpha (%, monthly rate) 773 -0.146 -0.115 0.144 -3.345 

5-year alpha (%, monthly rate) 773 -0.141 -0.113 0.196 -1.962 

10-year alpha (%, monthly rate) 773 -0.101 -0.076 0.203 -1.402 
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Panel F: Correlations between long- and short-horizon fund alphas   

  Monthly alpha 1-year alpha 5-year alpha 10-year alpha 

  All funds (N = 3768) 

Monthly alpha 1.000       

1-year alpha 0.942 1.000   
5-year alpha 0.688 0.762 1.000  
10-year alpha 0.531 0.592 0.869 1.000 

  Funds with monthly beta against SPY > 1 (N = 2272) 

Monthly alpha 1.000       

1-year alpha 0.934 1.000   
5-year alpha 0.655 0.731 1.000  
10-year alpha 0.459 0.527 0.848 1.000 

  Funds with monthly beta against SPY < 1 (N = 1496) 

Monthly alpha 1.000       

1-year alpha 0.961 1.000   
5-year alpha 0.783 0.850 1.000  
10-year alpha 0.754 0.795 0.886 1.000 

 

 

Panel G: Sign of fund alpha at long- and short-horizon   

    Funds with Funds with 

  monthly SPY monthly SPY 

 All funds alpha > 0 alpha < 0 

  All funds (N = 3768) 

Fraction, monthly alpha > 0 0.432 1.000 0.000 

Fraction, 1-year alpha > 0 0.391 0.862 0.033 

Fraction, 5-year alpha > 0 0.298 0.563 0.096 

Fraction, 10-year alpha > 0 0.304 0.526 0.135 

  Funds with monthly beta against SPY > 1 (N = 2272) 

Fraction, monthly alpha > 0 0.397 1.000 0.000 

Fraction, 1-year alpha > 0 0.346 0.823 0.031 

Fraction, 5-year alpha > 0 0.184 0.388 0.049 

Fraction, 10-year alpha > 0 0.145 0.289 0.050 

  Funds with monthly beta against SPY < 1 (N = 1496) 

Fraction, monthly alpha > 0 0.483 1.000 0.000 

Fraction, 1-year alpha > 0 0.460 0.911 0.038 

Fraction, 5-year alpha > 0 0.471 0.781 0.180 

Fraction, 10-year alpha > 0 0.546 0.823 0.287 
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Panel H: Fraction of funds whose long-horizon and short-horizon alphas differ significantly  

    Fraction of funds whose  

Investment  long run and short run alphas differ by at least 

horizon N 1% / year 2% / year 5% / year 

All funds 

1 year 3768 0.189 0.043 0.007 

5 years 3768 0.578 0.338 0.073 

10 years 3768 0.693 0.489 0.183 

Funds with monthly SPY beta > 1 & monthly SPY alpha > 0  

1 year 903 0.292 0.063 0.008 

5 years 903 0.784 0.599 0.164 

10 years 903 0.839 0.703 0.385 

Funds with monthly SPY beta > 1 & monthly SPY alpha < 0  

1 year 1369 0.231 0.053 0.015 

5 years 1369 0.565 0.326 0.065 

10 years 1369 0.692 0.508 0.208 

Funds with monthly SPY beta < 1 & monthly SPY alpha > 0  

1 year 723 0.122 0.026 0.000 

5 years 723 0.488 0.228 0.036 

10 years 723 0.698 0.452 0.069 

Funds with monthly SPY beta < 1 & monthly SPY alpha < 0  

1 year 773 0.058 0.016 0.001 

5 years 773 0.442 0.155 0.016 

10 years 773 0.519 0.237 0.009 

 

  



 

 

 

48 

Table 6: The largest 25 fund families by TNA, sorted by their average 10-year fund alpha    

 

For each of the 7,883 U.S. equity funds in our sample, we estimate its monthly beta by regressing excess monthly 

fund return on excess return to the SPDR S&P 500 ETF (SPY) and estimate its long-horizon beta against the SPY 

over five- and ten-year horizons using the modified Levhari and Levy (LL) approach detailed in Section 2.2. We 

then estimate each fund’s long horizon alpha based on fund and SPY mean returns at the indicated horizon together 

with the long horizon beta estimate.  Reported are average monthly beta and monthly, 5-year, and 10-year alphas 

across funds with at least 120 monthly returns within a fund family.  Results pertain to the 25 funds families with the 

largest aggregate TNA at the end of 2020 and are sorted from lowest to highest average 10-year alpha estimate. This 

table reveals that long-horizon alphas are considerably smaller than monthly alphas for the large, successful fund 

families.     

 

          5-year alpha 10-year alpha 

 Beta, Alpha (Monthly Equivalent; %) minus minus 

Row Monthly Monthly 5-year 10-year Monthly Monthly 

1 1.027 -0.187 -0.281 -0.437 -0.094 -0.250 

2 1.015 -0.143 -0.246 -0.401 -0.103 -0.258 

3 0.976 -0.102 -0.227 -0.348 -0.125 -0.246 

4 1.056 -0.157 -0.205 -0.306 -0.048 -0.149 

5 0.886 -0.146 -0.207 -0.259 -0.062 -0.113 

6 1.043 -0.070 -0.144 -0.234 -0.074 -0.164 

7 1.008 0.005 -0.062 -0.221 -0.067 -0.226 

8 0.991 -0.004 -0.082 -0.145 -0.078 -0.142 

9 1.053 0.024 -0.067 -0.137 -0.091 -0.160 

10 1.038 -0.010 -0.046 -0.104 -0.037 -0.095 

11 1.009 -0.011 -0.119 -0.102 -0.108 -0.091 

12 0.971 0.034 -0.063 -0.099 -0.097 -0.133 

13 1.053 0.006 -0.090 -0.098 -0.095 -0.104 

14 1.039 0.031 -0.099 -0.096 -0.130 -0.127 

15 1.050 0.030 -0.068 -0.092 -0.098 -0.122 

16 1.038 0.008 -0.053 -0.079 -0.061 -0.087 

17 0.973 0.026 -0.071 -0.073 -0.097 -0.099 

18 1.084 0.012 -0.037 -0.060 -0.049 -0.073 

19 1.028 0.012 -0.067 -0.060 -0.079 -0.071 

20 1.000 0.031 -0.056 -0.032 -0.086 -0.062 

21 1.028 -0.003 -0.031 -0.026 -0.028 -0.023 

22 0.993 0.103 0.031 -0.007 -0.072 -0.110 

23 1.038 0.142 0.048 0.060 -0.094 -0.082 

24 0.892 0.075 0.054 0.211 -0.021 0.136 

25 0.991 0.103 0.102 0.342 -0.001 0.239 

Mean 1.011 -0.008 -0.083 -0.112 -0.076 -0.104 

Median 1.027 0.008 -0.067 -0.098 -0.079 -0.110 
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Table A1: Fund turnover ratio and fund beta/alpha  

 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 

500 ETF (SPY) and compute its long-horizon beta against SPY over three investment horizons (1 year, 5 years, and 

10 years) using the modified Levhari and Levy (LL) approach detailed in Section 2.2. Lastly, we compute each 

fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. We also compute each fund’s 

turnover ratio as its median quarterly turnover ratio reported in CRSP, and sort the funds into four groups depending 

on whether the fund’s monthly SPY beta is above 1 and whether its monthly SPY alpha is positive. For each group 

of funds, we divide them into terciles based on their turnover ratio. The table reports the average turnover ratio, the 

average monthly, annual, 5-year, and decade betas, and the average monthly, annual, 5-year, and decade alphas for 

each tercile of funds with at least 120 monthly returns. This table shows that investment horizon has significant 

effects on fund alpha estimates regardless of the fund’s turnover rate.  

 

Tercile,               Average SPY alpha 

turnover  Average Average SPY beta  (%, monthly rate) 

ratio N turnover Monthly 1-year 5-year 10-year  Monthly 1-year 5-year 10-year 

Funds with monthly SPY beta > 1 & SPY alpha > 0 

1 248 0.259 1.106 1.122 1.252 1.455  0.152 0.131 0.025 -0.058 

2 249 0.666 1.114 1.139 1.273 1.487  0.150 0.127 -0.030 -0.130 

3 242 1.471 1.150 1.171 1.321 1.568  0.156 0.160 -0.036 -0.163 

All 739 0.793 1.123 1.144 1.282 1.503   0.153 0.139 -0.014 -0.117 

Funds with monthly SPY beta > 1 & SPY alpha < 0 

1 340 0.261 1.107 1.089 1.054 1.018  -0.169 -0.181 -0.231 -0.299 

2 329 0.677 1.122 1.108 1.074 1.043  -0.182 -0.195 -0.270 -0.341 

3 332 1.772 1.204 1.147 1.114 1.095  -0.256 -0.234 -0.334 -0.450 

All 1001 0.899 1.144 1.115 1.080 1.052   -0.202 -0.203 -0.278 -0.363 

Funds with monthly SPY beta < 1 & SPY alpha > 0 

1 218 0.185 0.837 0.853 0.862 0.888  0.139 0.118 0.136 0.257 

2 208 0.457 0.860 0.874 0.902 0.957  0.155 0.144 0.139 0.232 

3 213 1.155 0.878 0.890 0.929 0.997  0.172 0.153 0.141 0.205 

All 639 0.597 0.858 0.872 0.897 0.947   0.155 0.138 0.139 0.232 

Funds with monthly SPY beta < 1 & SPY alpha < 0 

1 204 0.190 0.892 0.880 0.808 0.733  -0.112 -0.112 -0.106 -0.065 

2 202 0.491 0.894 0.879 0.798 0.715  -0.140 -0.147 -0.161 -0.119 

3 195 1.756 0.871 0.870 0.784 0.702  -0.158 -0.171 -0.187 -0.151 

All 601 0.799 0.886 0.876 0.797 0.717   -0.136 -0.143 -0.151 -0.111 
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Table A2: Long-horizon alpha versus short-horizon alpha for the portfolio of mutual funds    
 

We form a portfolio of domestic equity mutual funds and compute its monthly beta by regressing excess monthly 

(equal-weighted or value-weighted) portfolio return on excess return to the SPDR S&P 500 ETF (SPY) and compute 

its long-horizon beta against SPY over three investment horizons (1 year, 5 years, and 10 years) using the modified 

Levhari and Levy (LL) approach detailed in Section 2.2. Lastly, we compute the portfolio’s long-horizon alpha 

using its long-horizon returns and the long-horizon beta. This table compares the monthly versus long-horizon 

alphas for the portfolio of all funds and for four sub-groups of funds depending on whether their monthly SPY beta 

is above 1 and whether their monthly SPY alpha is positive. Panel A presents the results based on equal-weighted 

portfolio returns; Panel B presents the results based on value-weighted portfolio returns. This table shows that 

investment horizon has significant effects on alpha estimates for portfolio of mutual funds, alleviating the concern 

that the effects are driven by endogenous fund survival.    

 

Panel A: Monthly and long-horizon beta/alpha for the equal-weighted portfolio of mutual funds    

All funds (N = 7883) 

Monthly beta 1.014   Monthly alpha (%) -0.073 

1-year beta 1.013  1-year alpha (%, monthly rate) -0.105 

5-year beta 0.984  5-year alpha (%, monthly rate) -0.189 

10-year beta  0.948   10-year alpha (%, monthly rate) -0.105 

Funds with monthly SPY beta > 1 & SPY alpha > 0 (N = 1535) 

Monthly beta 1.133   Monthly alpha (%) 0.155 

1-year beta 1.172  1-year alpha (%, monthly rate) 0.100 

5-year beta 1.314  5-year alpha (%, monthly rate) -0.088 

10-year beta  1.545   10-year alpha (%, monthly rate) -0.054 

Funds with monthly SPY beta > 1 & SPY alpha < 0 (N = 2911) 

Monthly beta 1.156   Monthly alpha (%) -0.253 

1-year beta 1.144  1-year alpha (%, monthly rate) -0.284 

5-year beta 1.085  5-year alpha (%, monthly rate) -0.393 

10-year beta  1.015   10-year alpha (%, monthly rate) -0.405 

Funds with monthly SPY beta < 1 & SPY alpha > 0 (N = 1310) 

Monthly beta 0.831   Monthly alpha (%) 0.134 

1-year beta 0.829  1-year alpha (%, monthly rate) 0.121 

5-year beta 0.828  5-year alpha (%, monthly rate) 0.102 

10-year beta  0.834   10-year alpha (%, monthly rate) 0.307 

Funds with monthly SPY beta < 1 & SPY alpha < 0 (N = 2127) 

Monthly beta 0.854   Monthly alpha (%) -0.186 

1-year beta 0.825  1-year alpha (%, monthly rate) -0.191 

5-year beta 0.712  5-year alpha (%, monthly rate) -0.214 

10-year beta  0.590   10-year alpha (%, monthly rate) -0.137 
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Panel B: Monthly and long-horizon beta/alpha for the value-weighted portfolio of mutual funds 

All funds (N = 7883) 

Monthly beta 1.008   Monthly alpha (%) -0.055 

1-year beta 1.000  1-year alpha (%, monthly rate) -0.071 

5-year beta 0.982  5-year alpha (%, monthly rate) -0.154 

10-year beta  0.955   10-year alpha (%, monthly rate) -0.118 

Funds with monthly SPY beta > 1 & SPY alpha > 0 (N = 1535) 

Monthly beta 1.100   Monthly alpha (%) 0.002 

1-year beta 1.115  1-year alpha (%, monthly rate) -0.035 

5-year beta 1.167  5-year alpha (%, monthly rate) -0.191 

10-year beta  1.209   10-year alpha (%, monthly rate) -0.186 

Funds with monthly SPY beta > 1 & SPY alpha < 0 (N = 2911) 

Monthly beta 1.091   Monthly alpha (%) -0.167 

1-year beta 1.076  1-year alpha (%, monthly rate) -0.185 

5-year beta 1.034  5-year alpha (%, monthly rate) -0.281 

10-year beta  0.985   10-year alpha (%, monthly rate) -0.304 

Funds with monthly SPY beta < 1 & SPY alpha > 0 (N = 1310) 

Monthly beta 0.875   Monthly alpha (%) 0.056 

1-year beta 0.863  1-year alpha (%, monthly rate) 0.054 

5-year beta 0.856  5-year alpha (%, monthly rate) 0.029 

10-year beta  0.831   10-year alpha (%, monthly rate) 0.174 

Funds with monthly SPY beta < 1 & SPY alpha < 0 (N = 2127) 

Monthly beta 0.883   Monthly alpha (%) -0.127 

1-year beta 0.861  1-year alpha (%, monthly rate) -0.127 

5-year beta 0.773  5-year alpha (%, monthly rate) -0.146 

10-year beta  0.677   10-year alpha (%, monthly rate) -0.083 

 
 


